Определение мощности
Допустим, нам необходимо убрать урожай пшеницы с поля площадью 100 га. Это можно сделать вручную или с помощью комбайна. Очевидно, что пока человек обработает 1 га площади, комбайн успеет сделать намного больше. В данном случае разница между человеком и техникой — именно то, что называют мощностью. Отсюда вытекает первое определение.
Мощность в физике — это количество работы, которая совершается за единицу времени.
Рассмотрим другой пример: между точкой А и точкой Б расстояние 15 км, которое человек проходит за 3 часа, а автомобиль может проехать всего за 10 минут. Понятно, что одно и то же количество работы они сделают за разное время. Что показывает мощность в данном случае? Как быстро или с какой скоростью выполняется некая работа.
В электромеханике эта величина имеет еще одно определение.
Мощность — это скалярная физическая величина, которая характеризует мгновенную скорость передачи энергии от системы к системе или скорость преобразования, изменения, потребления энергии.
Напомним, что скалярными величинами называются те, значение которых выражается только числом (без вектора направления).
Мощность человека в зависимости от деятельности
Вид деятельности |
Мощность, Вт |
---|---|
Неспешная ходьба |
60–65 |
Бег со скоростью 9 км/ч |
750 |
Плавание со скоростью 50 м/мин |
850 |
Игра в футбол |
930 |
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Пятерка по физике у тебя в кармане!
Решай домашку по физике на изи. Подробные решения помогут разобраться в сложной теме и получить пятерку!
Как обозначается мощность: единицы измерения
В таблице выше вы увидели обозначение в ваттах, и читая инструкции к бытовой технике, можно заметить, что среди характеристик прибора обязательно указано количество ватт. Это единица измерения механической мощности, используемая в международной системе СИ. Она обозначается буквой W или Вт.
Измерение мощности в ваттах было принято в честь шотландского ученого Джеймса Уатта — изобретателя паровой машины. Он стал одним из родоначальников английской промышленной революции.
В физике принято следующее обозначение мощности: 1 Вт = 1 Дж / 1с.
Это значит, что за 1 ватт принята мощность, необходимая для совершения работы в 1 джоуль за 1 секунду.
В каких единицах еще измеряется мощность? Ученые-астрофизики измеряют ее в эргах в секунду (эрг/сек), а в автомобилестроении до сих пор можно услышать о лошадиных силах.
Интересно, что автором этой последней единицы измерения стал все тот же шотландец Джеймс Уатт. На одной из пивоварен, где он проводил свои исследования, хозяин накачивал воду для производства с помощью лошадей. И Уатт выяснил, что 1 лошадь за секунду поднимает около 75 кг воды на высоту 1 метр. Вот так и появилось измерение в лошадиных силах. Правда, сегодня такое обозначение мощности в физике считается устаревшим.
Одна лошадиная сила — это мощность, необходимая для поднятия груза в 75 кг за 1 секунду на 1 метр. 🐴
Единицы измерения |
Вт |
---|---|
1 ватт |
1 |
1 киловатт |
103 |
1 мегаватт |
106 |
1 эрг в секунду |
10-7 |
1 метрическая лошадиная сила |
735,5 |
Подготовка к ОГЭ по физике онлайн поможет снять стресс перед экзаменом и получить высокий балл.
Все формулы мощности
Зная определения, несложно понять формулы мощности, используемые в разных разделах физики — в механике и электротехнике.
В механике
Механическая мощность (N) равна отношению работы ко времени, за которое она была выполнена.
Основная формула:
N = A / t, где A — работа, t — время ее выполнения.
Если вспомнить, что работой называется произведение модуля силы, модуля перемещения и косинуса угла между ними, мы получим формулу измерения работы.
Если направления модуля приложения силы и модуля перемещения объекта совпадают, угол будет равен 0 градусов, а его косинус равен 1. В таком случае формулу можно упростить:
A = F × S
Используем эту формулу для вычисления мощности:
N = A / t = F × S / t = F × V
В последнем выражении мы исходим из того, что скорость (V) равна отношению перемещения объекта на время, за которое это перемещение произошло.
В электротехнике
В общем случае электрическая мощность (P) говорит о скорости передачи энергии. Она равна произведению напряжения на участке цепи на величину тока, проходящего по этому участку.
P = I × U, где I — сила тока, U — напряжение.
В электротехнике существует несколько видов мощности: активная, реактивная, полная, пиковая и т. д. Но это тема отдельного материала, сейчас же мы потренируемся решать задачи на основе общего понимания этой величины. Посмотрим, как найти мощность, используя вышеуказанные формулы по физике.
Задача 1
Допустим, человек поднимает ведро воды из колодца, прикладывая силу 60 Н. Глубина колодца составляет 10 м, а время, необходимое для поднятия — 30 сек. Какова будет мощность человека в этом случае?
Решение:
Найдем вначале величину работы, используя тот факт, что мы знаем расстояние перемещения (глубину колодца 10 м) и приложенную силу 60 Н.
A = F × S = 60 Н × 10 м = 600 Дж
Когда известно значение работы и времени, найти мощность несложно:
N = A / t = 600 Дж / 30 сек = 20 Вт
Ответ: мощность человека при поднятии ведра — 20 ватт.
Задача 2
В комнате включена лампа мощностью 100 Вт. Напряжение домашней электросети — 220 В. Какая сила тока проходит через эту лампу?
Решение:
Мы знаем, что Р = 100 Вт, а U = 220 В.
Поскольку P = I × U, следовательно I = P / U.
I = 100 / 220 = 0,45 А.
Ответ: через лампу пройдет сила тока 0,45 А.
Вопросы для самопроверки
-
Что характеризует механическая мощность?
-
Какие существуют единицы измерения мощности в физике?
-
Какая из единиц измерения считается устаревшей?
-
Мощность можно назвать скалярной величиной? Что это означает?
-
Как из формулы нахождения мощности получить работу?
-
Какой буквой обозначается мощность в механике, а какой — в электротехнике?
-
Какую работу производит за 30 минут устройство мощностью 600 Вт?
-
Как узнать напряжение в сети, если мы знаем мощность подключенного к ней прибора и силу тока, проходящую через прибор?
-
Если в течение 1 часа автомобиль №1 едет со скоростью 60 км/ч, а автомобиль №2 — со скоростью 90 км/ч, одинаковую ли мощность они развивают в это время?
-
Допустим, автобус отвез пассажиров из города А в город В за 1 час. Если он планирует вернуться в город А пустым по той же трассе и потратить на это 1 час, ему понадобится развить такую же мощность или меньшую?
Понятие механической работы
В статье мы расскажем о главных энергетических характеристиках движения: работе и мощности. Дадим этим физическим величинам определение и рассмотрим их основные свойства.
В общем случае под работой в физике понимают меру воздействия силы. Затронем самые простые её разновидности, те, что объясняются законами классической механики.
Определение
Механическая работа – это скалярная величина, равная произведению модуля силы и модуля перемещения на косинус угла между ними.
Формула работы в механике следующая:
[A=|F|*|s|* cos alpha]
[boldsymbol{F}]– сила, действующая на тело, [boldsymbol{S}] – перемещение тела, [boldsymbol{a}] – угол между ними.
Механическая работа: основные формулы
Работа, совершаемая внешней силой против деформации тела, может быть записана в виде формулы:
A = k*(x2 – x1)2/2, где k – коэффициент упругости тела. x1 и x2 – начальное и конечное удлинение тела. Получается, что работа в этом случае зависит лишь от координат.
Работа силы тяжести записывается по формуле:
A = m*g*(h2 – h1), где m – масса тела. g – ускорение свободного падения. h1 и h2 – начальная и конечная высота тела. От траектории тела работа сил тяжести (если считать поле тяготения постоянным и однородным) не зависит.
Работа сил трения записывается по формуле:
A = -Fтр* S, где Fтр – сила трения. S – путь пройденный телом. Обратите внимание, сила взята со знаком минус. Силы трения всегда противоположны перемещению, куда бы тело не двигалось.
В международной системе СИ единицей измерения механической работы считается Джоуль. Он равен работе совершённой силой в 1 Н при перемещении тела в направлении её действия на 1 м.
Результирующая работа сил
Результирующая механическая работа нескольких сил равна сумме работ каждой из них.
[mathrm{A}=sum Delta A i=sum F Delta S i]
Если считать перемещения предельно малыми (ΔSi→0), то можно перейти к интегралу [mathrm{A}=int_{b}^{a} F(x) d x].
Графически работа изображается как площадь фигуры на графике показывающем зависимость силы от координаты.
Случаи, когда механическая работа не совершается
Рассмотрим их:
- Сила действует, но тело своего местоположения не меняет и не деформируется. Например, когда мы пытаемся сдвинуть с места большой, тяжёлый шкаф;
- Тело движется, но на него не действуют никакие силы либо их действие скомпенсировано. Например, когда тело движется в безвоздушном пространстве только по инерции;
- Сила и перемещение перпендикулярны друг другу. Например, когда на тело действует центростремительная сила.
Из выше сказанного следует, что для совершения работы обязательно наличие действующей на тело силы и перемещение его под действием этой силы.
Нет времени решать самому?
Наши эксперты помогут!
Мощность: определение, формулы
Определение
Мощностью в физике называют количество работы, которое было совершено за единицу времени.
Формула выражения работы через мощность выглядит следующим образом: [boldsymbol{N=(A / Delta t)}].
По виду это выражение очень сильно напоминает формулу выражения скорости, только там вместо работы стоит перемещение. Это не просто совпадение. Мощность действительно можно охарактеризовать, как скорость совершения работы.
Вот ещё несколько формул для выражения мощности:
N = F*S/ Δt = F* v = F* v cos α
v – вектор скорости, v – абсолютная величина скорости, α – угол между скоростью тела и линией действия на него силы.
Из приведённой выше первой формулы для мощности вытекает единица её измерения. Если работа измеряется в джоулях, а время в секундах, то логично предположить, что в системе СИ мощность будет мериться в Джоулях на секунду Дж/с. Так и есть. Единица измерения мощности называется Ватт. 1 Ватт равен работе в 1 Джоуль, которая совершается за 1 секунду. Однако подобная мощность столь мала, что на практике чаще всего используют единицу измерения в тысячу Ватт. Называют её Киловатт (кВт).
На практике мощность нередко указывают в лошадиных силах. Это внесистемная един6ица измерения мощности. 1 лошадиная сила равна 0,735 киловатт или 745.7 Вт. Это так называемая электрическая лошадиная сила, традиционно используется именно в России. Есть ещё механическая лошадиная сила, метрическая лошадиная сила, гидравлическая лошадиная сила и т. д. Все они несколько отличаются от заявленной выше величины.
Поиск ответов на кроссворды и сканворды
Ответ на вопрос «Работа, совершенная в единицу времени «, 8 (восемь) букв:
мощность
Альтернативные вопросы в кроссвордах для слова мощность
Определение слова мощность в словарях
Большая Советская Энциклопедия
Значение слова в словаре Большая Советская Энциклопедия
физическая величина, измеряемая отношением работы к промежутку времени, в течение которого она произведена. Если работа производится равномерно, то М. определяется формулой N = A/t, где А ≈ работа, произведённая за время t; в общем случае N = dA/dt; где …
Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.
Значение слова в словаре Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.
-и, ж. см. мощный. Физическая величина, характеризующая работу (в 1 знач.), совершаемую в единицу времени. Мощностью в 100 ватт. мн. Производственные объекты (электростанции, заводы, машины). Ввести в действие новые энергетические мощности.
Википедия
Значение слова в словаре Википедия
Мо́щность — физическая величина , равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы , выполняемой за некоторый промежуток времени, к этому промежутку …
Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.
Значение слова в словаре Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.
ж. Отвлеч. сущ. по знач. прил.: мощный (1). Толщина пласта, слоя (минералов, каменного угля, воздуха и т.п.). Физическая величина, измеряемая отношением работы к промежутку времени, в течение которого она совершена. Величина, характеризующая максимальные …
Примеры употребления слова мощность в литературе.
Но реакторщику должно быть ясно, что если реактор выведен в критическое состояние и мощность поднята до 200 МВт, то при положительном быстром мощностном коэффициенте реактивности, а именно таким он был, нет препятствий для подъема мощности.
Что же тогда говорить о машинах грузоподъемностью 10, 20, 30 тонн, автомотрисах с моторами мощностью в 300—500 лошадиных сил, автопоездах?
Если деятельность классических кибернетических систем обычно направлена на поддержание постоянства в контролируемой системе, как это, например, имеет место в термостате, то в энергетическом, адаптационном и репродуктивном гомеостате происходит саморазвитие, увеличивающее мощность этих систем в соответствии с потребностями развития организма.
ЛТП — лазеры точечного поражения — представляли собой батареи излучателей когерентного светового потока мощностью несколько десятков мегаватт, они равномерно располагались по всей длине корабля на его наружной обшивке в особых кассетах по нескольку десятков лазеров, и их расположение было выбрано с расчетом ведения максимально плотного огня практически по всем азимутам подлета.
Подтянуть ремень безопасности и привязные ремни, включить обогрев трубки Пито и антиобледенитель, освещение кабины на полную мощность, скорость снизить до 275 узлов и стараться держать самолет в горизонтальном полете.
Телескоп Аресибо, работая в режиме радара, способен послать в заданном направлении один мегаватт мощности, думала она, тогда цивилизация, даже чуть опережающая нас, может передать сотни мегаватт или более!
Источник: библиотека Максима Мошкова
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Другими словами, работа — мера воздействия силы.
Определение механической работы
Работа А, совершаемая постоянной силой F→, — это физическая скалярная величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы F→ и перемещением s→.
Данное определение рассматривается на рисунке 1.
Формула работы записывается как,
A=Fs cos α.
Работа – это скалярная величина. Единица измерения работы по системе СИ — Джоуль (Дж).
Джоуль равняется работе, совершаемой силой в 1 Н на перемещение 1 м по направлению действия силы.
Рисунок 1. Работа силы F→: A=Fs cos α=Fss
При проекции Fs→ силы F→ на направление перемещения s→ сила не остается постоянной, а вычисление работы для малых перемещений Δsi суммируется и производится по формуле:
A=∑∆Ai=∑Fsi∆si.
Данная сумма работы вычисляется из предела (Δsi→0), после чего переходит в интеграл.
Графическое изображение работы определяют из площади криволинейной фигуры, располагаемой под графиком Fs(x)рисунка 2.
Рисунок 2. Графическое определение работы ΔAi=FsiΔsi.
Примером силы, зависящей от координаты, считается сила упругости пружины, которая подчиняется закону Гука. Чтобы произвести растяжение пружины, необходимо приложить силу F→, модуль которой пропорционален удлинению пружины. Это видно на рисунке 3.
Рисунок 3. Растянутая пружина. Направление внешней силы F→ совпадает с направлением перемещения s→. Fs=kx, где k обозначает жесткость пружины.
F→упр=-F→
Зависимость модуля внешней силы от координат x можно изобразить на графике с помощью прямой линии.
Рисунок 4. Зависимость модуля внешней силы от координаты при растяжении пружины.
Из выше указанного рисунка возможно нахождение работы над внешней силой правого свободного конца пружины, задействовав площадь треугольника. Формула примет вид
A=kx22.
Данная формула применима для выражения работы, совершаемой внешней силой при сжатии пружины. Оба случая показывают, что сила упругости F→упр равняется работе внешней силы F→, но с противоположным знаком.
Если на тело действует несколько сил, то их общая работа равняется сумме всех работ, совершаемых над телом. Когда тело движется поступательно, точки приложения сил перемещаются одинаково, то есть общая работа всех сил будет равна работе равнодействующей приложенных сил.
Мощность
Мощностью называют работу силы, совершаемую в единицу времени.
Запись физической величины мощности, обозначаемой N, принимает вид отношения работы А к промежутку времени t совершаемой работы, то есть:
N=At.
Система СИ использует в качестве единицы мощности ватт (Вт). 1 Ватт — это мощность, которую совершает работу в 1 Дж за время 1 с.
Помимо Ватта, существуют и внесистемные единицы измерения мощности. Например, 1 лошадиная сила примерна равна 745 Ваттам.
Механическая работа – это одна из основных скалярных величин в физике. В рамках стандартной школьной программы она изучается в седьмом классе в разделе механики. Механическая работа – один из способов изменения внутренней энергии тела или субстанции (например, газа или жидкости) наряду с такими формами теплопередачи, как теплопроводность, конвекция и излучение, которые изучаются в разделе тепловых явлений.
Содержание
- Что такое работа в физике – определение и формула
- В чем измеряется работа
- Работа силы трения
- Положительная и отрицательная работа
- Полезная или затраченная работа
- Мощность
-
Примеры решения задач
- Задача 1
- Задача 2
- Задача 3
- Задача 4
Что такое работа в физике – определение и формула
Механическая работа – это количество энергии, которое нужно затратить для того, чтобы тело начало равномерно замедляющееся движение и прошло некоторую дистанцию.
В физике механической работой называется произведение силы, которая действует на некоторое тело, на расстояние, которое оно проходит под ее воздействием:
A = F * S
В более сложных случаях в формуле появляется и третья величина – косинус угла, под которым друг к другу расположены векторы движения и приложенной силы. Найти ее значение можно по формуле:
A = F * S * cosA
В чем измеряется работа
Физические единицы, в которых выражается механическая работа, – Джоули.
Существуют разные способы для ее практического измерения, которые зависят от типа произведенного движения. При этом в формулу работы подставляют значение силы в Ньютонах и расстояния в метрах. Угол между векторами измеряют в математических единицах – градусах.
Работа силы трения
При условиях, существующих на Земле, на любое движущееся тело оказывает воздействие сила трения, замедляющая его движение. Чаще всего это трение поверхности, по которой движется объект. Это очевидно из того факта, что при воздействии постоянной силы на тело его скорость окажется переменной.
Следовательно, должна быть и другая сила, противодействующая ей – и это сила трения. Если система координат выбрана по направлению движения тела, то ее числовое значение будет отрицательным.
Положительная и отрицательная работа
Числовое значение работы, которую совершает сила, может становиться отрицательным в случае если ее вектор противоположен вектору скорости.
Иными словами, сила может не только придавать телу скорость для совершения движения, но и препятствовать уже совершаемому перемещению. В таком случае она будет называться противодействующей.
Полезная или затраченная работа
У тела, совершающего одно и то же действие, есть два значения работы. Первая из них, полезная, вычисляется по обычной формуле.
Вторая, затраченная, по своему понятию не имеет общей формулы для вычисления и измеряется практически. Эта разница между совершенной в реальности работой и той, которая должна была быть совершена в теории, равна коэффициенту полезного действия – КПД. Он вычисляется так:
КПД = А полезная / А затраченная,
и выражается в процентах. КПД всегда меньше 100.
Мощность
Среднее количество работы, совершаемой за единицу времени (секунду), характеризует такую величину, как мощность. Формула для ее вычисления выглядит так:
Р = A / t
В качестве работы можно подставить люблю известную формулу для ее вычисления в зависимости от ситуации. Ответ будет выражен в Ваттах.
Однако при равномерном движении можно использовать и другую формулу:
Р = F * v
Подставив вместо обычной скорости мгновенную, можно получить значение мгновенной мощности.
Примеры решения задач
Рассмотрим несколько простых задач на нахождение механической работы.
Задача 1
Какую работу совершает подъемный механизм, поднимающий десятикилограммовый блок на высоту 50 метров.
Решение:
Для того, чтобы поднять тело, необходимо преодолеть действующую на него силу тяжести. То есть F, с которой поднимают блок, равна той, с которой он притягивается к земле. Так как последняя равна m * g, то для нахождения конечного результата понадобится только одна измененная версия стандартной формулы, упомянутой выше: A = S * m * g.
При помощи простой математики найдем числовой ответ:
A = 50 м * 10 кг * 10 Н/кг;
A = 5000 Дж.
Ответ: 5000 Дж.
Впрочем, не всегда речь идет о силе тяжести.
Задача 2
Какая работа совершается силой упругости, когда пружина с жесткостью 10 Н/м, сжатая на 20 см, возвращается в исходное состояние? Система замкнута, нет никаких внешних сил, воздействующих на пружину.
Решение:
Для начала нужно найти саму F упругости, которая совершает работу. Ее формула – F = x * |k|, где x – это длина, на которую сжимается или растягивается пружина, а k – коэффициент ее жесткости. Перемещение пружины равно ее деформации, и следовательно, конечная формула в этом случае будет выглядеть так: A = S * x * k = x * x * k = x^2 * k.
Далее при помощи элементарных вычислений рассчитаем ответ:
A = (0,2 м)^2 * 10 Н/м = 0,04 * 10 = 0,4 Дж.
Ответ: 0,4 Дж.
Но во всех задачах по данной теме траектория движения тела прямая.
Задача 3
Рассчитайте, какова сила, действующая на колесо, если на то, чтобы совершить полный оборот, ему требуется 10 кДж. Диаметр диска равен 40 см, а толщина шины – 10 см.
Решение:
В этом случае нам нужно найти не А, а F, но сделать это можно при помощи все той же формулы. Возьмем точку на поверхности колеса. Предположим, что при вращательном движении ее вектор будет противоположен вектору приложения силы, а значит косинусом в формуле вновь можно пренебречь. Таким образом, за один оборот колеса точка пройдет расстояние, равное длине окружности, которую можно вычислить как 2πr или πd. Диаметр окружности можно найти из предоставленных данных: он равен сумме диаметра диска и удвоенной толщины шины, то есть 40 см + 2 * 10 см = 40 см + 20 см = 60 см = 0,6 м.
Теперь, когда мы можем вычислить расстояние, у нас есть все данные для того, чтобы приступить к нахождению силы.
Формула работы для этого случая будет такой: A = F * π * d, то силу, соответственно, можно будет выразить как F = A / (π * d).
В таком случае:
F = 10 кДж / (3,14 * 0,6 м) = 10000 Дж / 1,884 м = ~ 5308 Н.
Ответ: 5308 Н.
В завершение решим самый сложный вариант задачи, включающий в себя все, о чем говорилось выше.
Задача 4
Автомобиль Фольксваген весом 2500 кг заезжает на гору. Какова должна быть его минимальная скорость, чтобы удержаться на горе, если сила тяги равна 10 кН, время работы двигателя – 10 с, КПД – 30%, а угол наклона горы – 60 градусов. Трением и прочими силами пренебречь.
Решение:
На первый взгляд задача может показаться сложной, но для ее решения используются только простые известные формулы.
Запишем условие в более наглядном виде.
Дано:
m = 2500 кг;
F = 10000 H;
t = 10 с;
КПД = 30%;
угол A = 1500 (60+90, т. к. сила тяжести приложена под углом 90 к горизонтали);
V – ?
Выведение формулы:
Шаг 1. По условию A1 (силы тяжести) = А2 (тяги).
A1 = mg;
A2 = P * t / КПД.
То есть mg = P * t / КПД.
Шаг 2. P = F * V * cosA.
Шаг 3. Общая формула: mg = F * V * cosA * t / КПД.
V = (m * g * КПД) / (F * t * cosA).
Числовое решение:
V = (2500 кг * 10 Н/кг * 30%) / (10000 H * 10 с * cos150);
V = (2500 кг * 10 Н/кг * 0,3) / (10000 H * 10 с * cos60);
V = 7500 / 50000;
V = 0,15 м/с.
Ответ: 0,15 м/с.
Предыдущая
ФизикаЭлектролиз — понятие, правила применения и схемы процесса
Следующая
ФизикаРезонанс — определение, условия и применение физического явления
Что такое ватт
Величина единицы электрической энергии совершаемой работы за промежуток времени называется ваттом.
Названа в честь механика – изобретателя Джеймса Уатта. Обозначается Вт или W. Он впервые предложил применять лошадиную силу как универсальную единицу измерения характеристик машин.
Можно представить формулой:
Вт= джоуль/секунду, или 1Вт=1 дж/сек.
Для определения мощности электрических машин применяется следующая формула:
P=U*I. Напряжение умноженное на ток.
Электроэнергия измеряется «U» в вольтах, а «I» в амперах получаемая мощность в ваттах.
Влияние силы тока на разные материалы
Одна и та же сила тока оказывает разное влияние при прохождении через различные материалы. Металлы, например, отличаются хорошей проводимостью. Примеси повышают сопротивление, поэтому для улучшения экономических показателей линии электропередач создают из хорошо очищенной меди. Полимерные соединения – диэлектрики, их часто используют для создания изоляции.
Вода проводит электрический ток, благодаря находящимся в ней ионам. Это свойство используют для фильтрации, создания тонких покрытий и автономных источников питания. Достаточно опустить в жидкость пластины с разноименными зарядами, чтобы обеспечить перемещение частиц в противоположных направлениях.
Слабым электрическим током стимулируют мозговую деятельность, оказывают стимулирующее воздействие на кожные покровы. Специализированные аппараты применяют в медицинских учреждениях и салонах красоты. Сильный ток опасен для человека, поэтому при работе с электричеством следует применять соответствующие средства защиты.
Как правильно переводить эти единицы
Ватт равен килограмму, перемноженному на квадратные метры и поделенные на кубические секунды. Приставка кило обозначает перемножение на 1000. Такой же принцип применяется и в мощностных показателях, то есть в 1 кВт находится 1000 Вт и 1000 вольт. Это обозначает, что 1 единица = 0,001 подъединицы. То есть, если сделать перевод мощности, то электроприбор в 3 кВт будет равен 3000 Вт.
В электричестве
Для упрощения измерений в электричестве используется подъединица. Узнать, сколько ватт в киловатте и перевести единицы можно, перемножив вт на 103 и поделив на 1000. Для осуществления обратного перевода необходимо квт перемножить на 103 или же известные показатели умножить на 1000.
В отоплении
Чтобы измерить тепловую мощность, необходимо использовать джоуль. Это работа, которая совершается 1 ньютоном в 1 метр. Чтобы перевести джоуль в квт, нужно использовать подъединицу джоуля. В 1 кДж находится 0,239 ккал. В 1 ккал находится 4,1868 кДж. В 1 кВт находится 860 ккал. Значит в 1000 ккал находится 1,163 кВт в час.
Соотношение единиц измерения
Длина |
|||
1 дюйм | = 2,54 см | 1 миллиметр | = 0,03937 дюйма |
1 фут | = 0,3048 м | 1 сантиметр | = 0,3937 дюйма |
1 ярд | = 0,9144 м | 1 дециметр | = 0,3281 фута |
1 род | = 5,0292 м | 1 метр | = 3,281 фута |
1 чейн | = 20,117 м | 1 метр | = 1,094 ярда |
1 фурлонг | = 201,17 м | 1 декаметр | = 10,94 ярда |
1 миля | = 1,6093 м | 1 километр | = 0,6214 мили |
1 морская миля | = 1,8532 м | 1 километр | = 0,539 морской мили |
Площадь |
|||
1 кв. дюйм | = 6,4516 кв. см | 1 кв. сантиметр | = 0,1550 кв. дюйма |
1 кв. фут | = 929,03 кв. см | 1 кв. метр | = 1,550 кв. дюйма |
1 кв. ярд | = 0,8361 кв. м | 1 ар | = 119,60 кв. ярда |
1 акр | = 4046,9 кв. м | 1 гектар | = 2,4711 акра |
1 кв. миля | = 259,0 га | 1 кв. километр | = 0,3861 кв. мили |
Объем |
|||
1 куб. дюйм | = 16,387 куб. см | 1 куб. сантиметр | = 0,061 куб. дюйма |
1 куб. фут | = 0,0283 куб. м | 1 куб. дециметр | = 0,035 куб. фута |
1 куб. ярд | = 0,7646 куб. м | 1 куб. метр | = 1,308 куб. ярда |
Как перевести ватты в киловатты
Бытовые электроприборы имеют разную мощность. Она колеблется от нескольких Вт до нескольких тысяч ватт. Для удобства расчета приводят к единому значению. Обычно это киловатт, обозначается кВт.
Для перевода ваттов в киловатты необходимо знать, сколько ватт содержится в 1 кВт. Само слово «кило» обозначает тысячу. То есть один киловатт электроэнергии содержит 1000 ватт.
Для удобства перевода одной единицы в другую существуют различные программы. Но перевод из одной величины в другую несложно выполнить самостоятельно.
Например, в доме имеется несколько потребителей электроэнергии, люстра с тремя лампами по 60 Вт, телевизор 150 Вт и музыкальный центр 100 Вт. Получаем 3*60+150+100, результат равен 430 Вт. Мы знаем, что 1КВт содержит 1000 Вт. Делим это значение на 1000, получаем 0,43 Квт.
Для наглядности произведем несколько расчетов. Полученный перевод из Вт в кВт сведем в таблицу.
Вт | 5 | 90 | 100 | 250 | 500 | 750 | 1000 | 2500 | 10500 |
кВт | 0,005 | 0,09 | 0,1 | 0,25 | 0,5 | 0,75 | 1 | 2,5 | 10,5 |
Зачастую требуется произвести обратную функцию. Перевод из Квт в Вт. Для этого мощность в киловаттах необходимо умножить на 1 000. Произведем вычисления и для наглядности сведем в таблицу.
кВт | 5 | 2,5 | 1 | 0,85 | 0,4 | 0,25 | 0,08 | 0,007 |
Вт | 5 000 | 2500 | 1000 | 850 | 400 | 250 | 80 | 7 |
На промышленных предприятиях используются потребители электроэнергии мощностью в несколько тысяч киловатт. Для удобства введено понятие мегаватт, обозначается как мВт. Приставка «мега» обозначает 1 000 000. То есть в 1 мВт содержится 1 000 000 Вт, или 1 000 кВт.
Мощность электричества
Количество работы, совершаемой электрическим током за единицу времени, называется мощностью. Она преобразуется в различные виды энергий: механическую, тепловую и т. д. В цепях с постоянным и переменным токами она вычисляется различными способами. В большинстве случаев ее рассчитывать нет необходимости, поскольку она указывается на электрооборудовании (на корпусе и в документации). Расчет необходим только при проектировании устройств.
Основные соотношения
В цепи постоянного тока формула мощности записывается таким образом: P = I * U. Существуют и другие соотношения, получаемые из закона Ома (I = U / R):
- Для участка цепи: P = sqr (I) * R = sqr (U) / R.
- Для полной цепи (с учетом ЭДС — e) равенство записывается следующим образом: P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
- P = I * (e + (I * Rвн)).
Во втором случае формулу нужно применять при условии, что в цепи присутствует электрический двигатель или выполняется зарядка аккумулятора, т. е. происходит потребление электроэнергии. При наличии в электроцепи генератора или гальванического элемента, поскольку происходит отдача энергии, следует применять последнюю формулу. Эти соотношения невозможно применять для цепей, которые потребляют переменный ток. Основная причина — его характеристики, которые меняются с течением времени по определенному закону.
В физике существуют три вида мощностей, которые зависят от элементов: активная (резистор), реактивная (емкость и индуктивность) и полная. Активная мощность вычисляется при помощи следующей формулы: Pа = I * U * cos (a). В соотношении учитываются значения U и I, которые являются среднеквадратичными, а также косинус угла сдвига фаз между ними. Реактивная мощность находится аналогично, только вместо косинуса следует использовать синус: Qр = I * U * sin (a). При индуктивной нагрузке в цепи значение Qp>0, а при емкостной Qp<0. Единицей измерения мощности в международной системе исчислений (СИ) является ватт (сокращенно Вт).
Вам это будет интересно Устройство и принцип работы трансформатора тока
Физический смысл ватта
Физический смысл ватта следующий: расход электроэнергии за определенное время. Следовательно, 1 Вт — расход 1 джоуля (Дж) электрической энергии за 1 секунду. Иными словами, киловаттный чайник потребляет 1000 Дж электрической энергии за единицу времени. Для удобства выполнения расчетов используются специальные приставки: милливатт (мВт, mwatt), киловатт (кВт или kwatt), мегаватт (МВт, Mwatt), гигаватт (ГВт, Gwatt) и т. д.
Ватт связан следующим равенством с другими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr (c)) = 1 Н * м / с = 746 л. с. Последнее значение является электрической лошадиной силой. Численные значения приставок можно найти в технических справочниках, а также в интернете. Например, 1 кВт равен 1000 Вт. Приставка «к» обозначает, что следует число, стоящее перед ней, умножить на 1000. Для того чтобы перевести 1 МВт, следует умножить число на значение приставки: 1 * 1000000 = 1000000 Вт = 1000 кВатт. Если необходимо перевести Вт в кВт, то нужно количество ватт разделить на 1000.
Для учета расхода количества электроэнергии принята единица, которая называется ватт-час (Втч). Величины Втч и Вт отличаются. Ватт — мощность, а Ватт-час расшифровывается, как количество электроэнергии, потребляемое за единицу времени. Очень важно правильно писать и расшифровывать последнюю величину Вт*ч (умножение, а не деление). Разницу между Вт и ВТч возможно определить и расчетным методом. Например, необходимо рассчитать потребление электроэнергии за 30 минут электроприбором мощностью 2,5 кВт. Порядок вычисления следующий:
- Следует перевести время в часы: 30/60 = 0,5 (ч).
- Выполнить расчет по формуле: Pч = P * t = 2,5 * 0,5 = 1,25 (киловатт-час пишется — кВт*ч).
Расшифровка результата вычисления значит, что за 30 минут прибор потребит 1,25 кВт*ч или 1250 Вт (1,25 * 1000 = 1250). Если нужно рассчитать количество потребляемой мощности лампой накаливания мощностью в 100 Вт за 20 часов, то нужно подставить значения в формулу: 100 * 20 = 2 кВт*ч.
Таким образом, мощность и количество потребляемой электрической энергии являются различными физическими величинами, которые довольно просто рассчитываются. Вычисления помогают определить количество электроэнергии и помогают в экономии денежных средств.
Киловатт и киловатт-час – в чем разница
Наряду с обозначением киловатт можно встретить единицу киловатт в час. Например, в величинах КВт ч отображаются показания электросчетчиков. Неспециалисты эти понятия не различают, считают, что это одно и то же. Однако это совершенно разные величины.
Ватт в час – это количество электроэнергии, произведенное или потребленное за единицу времени, обозначается Вт/ч.
Например, 1 кВт час говорит о том, что энергоприемник за 1 час потребляет 1 КВт электроэнергии.
Киловатт в отличие от кВтч представляет величину, обозначающую потребленную или сгенерированную мгновенную мощность.
Как посчитать общую мощность бытовых приборов
Установленная мощность дома или коттеджа важна при выполнении расчета и подбора электропроводки и автоматов. Без этого параметра невозможно спроектировать электроснабжение дома.
Чтобы узнать установленную мощность, необходимо из паспортов на оборудование выбрать данные о потребляемой мощности. Например, как указано в табличке.
Наименование | Мощность, Вт |
Телевизор | 150 |
Бойлер | 1 500 |
Электропечь | 2 000 |
Стиральная машина | |
Светильники (общее количество лампочек во всем доме) | 1 000 |
Компьютер | 100 |
В С Е Г О: | 3 750 Вт или 3,75 КВт |
Для правильного расчета электроснабжения дома учитывают коэффициент совмещения. Он обозначает, сколько потребителей работает одновременно.
Для установленной мощности в доме, коттедже, квартире до 14 кВт, в расчетах применяется коэффициент, равный 0,8. То есть берется общая величина нагрузок и умножается на 0,8. Для нашего примера в расчетах берут мощность равную 3,75*0,8=3 кВт.
Сколько ватт находится в киловатте
Ватт – относительно малая величина, чтобы в быту пользоваться исключительно ею. Мощность ламп в жилом помещении колеблется от 10 до 100 Вт. Большая часть бытовой техники потребляет от 1000 до 3000 Вт. На небольшом производстве речь идет о десятках тысяч ватт и более. Оперировать числами с 5 или 7 нулями неудобно, поэтому возникает потребность в более крупной единице измерения.
В описании приборов используют такие обозначения:
- В.А;
- кВт;
- кВт.ч;
- МВт.
В международную систему СИ были введены единицы измерения, кратные десятичному множителю. Они выводятся через базовые при помощи умножения и деления на коэффициент, кратный 10. Часть из них получила собственные названия. Производные единицы используются наряду с базовыми.
В таблице приведены значения коэффициента и соответствующие им наименования.
коэффициент | наименование |
0,000000001 | нано |
0,000001 | микро |
0,001 | милли |
0 | |
1000 | кило |
1000000 | мега |
1000000000 | гига |
1000000000000 | тера |
1000000000000000 | пета |
С помощью этой таблицы легко ответить на вопрос, сколько ватт содержится в киловатте электроэнергии, – 1000 ватт.
Таблицы перевода физических величин
Таблицы позволяют осуществлять перевод физических величин — метрических, СИ, используемых в США и Великобритании. Во всех таблицах используется умножение.
ДЛИНА
Табл. 1. Метрическая система, соотношение единиц измерения длины
Пересчет | В | ||||||||
ангстрем (A) | нанометр (nm, нм) | микрон (mkm, мкм) | миллиметр (mm, мм) | сантиметр (cm, см) | дециметр (dm, дм) | метр (m, м) | километр (km, км) | ||
Из | метр (m, м) | 1х10Е10 | 1х10Е9 | 1000000 | 1000 | 100 | 10 | 1 | 0.001 |
Табл. 2. Британская и Американская системы, соотношение единиц измерения длины
Пересчет | В | ||||||||
лига, лье | миля (ml) | род (rd) | ярд (yd) | фут (ft) | линк (link) | дюйм (in) | линия (line) | ||
Из | миля (mi) | 0.3333 | 1 | 320 | 1760 | 5280 | 8000 | 63360 | 760300 |
Табл. 3. Перевод единиц измерения длины из Британско — Американской системы в Метрическую
Пересчет | В | ||||||||
ангстрем (A) | нанометр (nm, нм) | микрон (mkm, мкм) | миллиметр (mm, мм) | сантиметр (cm, см) | дециметр (dm, дм) | метр (m, м) | километр (km, км) | ||
Из | лига, лье | 4828х10Е10 | 4828х10Е9 | 4828х10Е6 | 4828х10Е3 | 482800 | 48280 | 4828 | 4.828 |
миля (mi) | 1609х10Е10 | 1609х10Е9 | 1609х10Е6 | 1609х10Е3 | 160900 | 16090 | 1609 | 1.609 | |
род (rd) | 5029х10Е7 | 5029х10Е6 | 5029х10Е3 | 5029 | 502.9 | 50.29 | 5.029 | 0.005029 | |
ярд (yd) | 9144х10Е6 | 9144х10Е5 | 9144х10Е2 | 914.4 | 91.44 | 9.144 | 0.9144 | 0.0009144 | |
фут (ft) | 3048х10Е6 | 3048х10Е5 | 3048х10Е2 | 304.8 | 30.48 | 3.048 | 0.3048 | 0.0003048 | |
линк (link) | 2012х10Е6 | 2012х10Е5 | 2012х10Е2 | 201.2 | 20.12 | 2.012 | 0.2012 | 0.0002012 | |
дюйм (in) | 254х10Е6 | 254х10Е5 | 254х10Е2 | 25.4 | 2.54 | 0.254 | 0.0254 | 0.0000254 | |
линия (line) | 2117х10Е4 | 2117х10Е3 | 2117 | 2.117 | 0.2117 | 0.02117 | 0.002117 | 0.000002117 |
ПЛОЩАДЬ
Табл. 4. Перевод единиц измерения площади
Пересчет | В | ||||||||
см2 | м2 | км2 | дюйм2 | фут2 | ярд2 | акр | миля2 | ||
Из | см2 | 1 | 0.0001 | — | 0.155 | 0.001076 | 0.0001196 | — | — |
м2 | 10000 | 1 | 0.000001 | 1550 | 10.7639 | 1.19599 | 0.0002471 | — | |
км2 | — | 1000000 | 1 | — | — | — | 247.105 | 0.386102 | |
дюйм2 | 6.4516 | 0.000645 | — | 1 | 0.006944 | 0.000772 | — | — | |
фут2 | 929.03 | 0.092903 | — | 144 | 1 | 0.111111 | 0.000023 | — | |
ярд2 | 8361.27 | 0.836127 | — | 1296 | 9 | 1 | 0.0002066 | — | |
акр | — | 4046.86 | 0.004047 | — | 43560 | 4840 | 1 | 0.001562 | |
миля2 | — | — | 2.589987 | — | — | — | 640 | 1 |
МАССА
Табл. 5. Перевод единиц измерения массы
Пересчет | В | |||||||
кг | тонна | фунт | Англ. cwt | Англ.тонна | Амер. cwt | Амер. тонна | ||
Из | кг | 1 | 0.001 | 2.20462 | 0.019684 | 0.000984 | 0.022046 | 0.001102 |
тонна | 1000 | 1 | 2204.62 | 19.6841 | 0.984207 | 22.0462 | 1.10231 | |
фунт | 0.453592 | 0.000454 | 1 | 0.008929 | 0.000446 | 0.01 | 0.0005 | |
Англ. cwt | 50.8023 | 0.050802 | 112 | 1 | 0.05 | 1.12 | 0.056 | |
Англ.тонна | 1016.05 | 1.01605 | 2240 | 20 | 1 | 22.4 | 1.12 | |
Амер. cwt | 45.3592 | 0.045359 | 100 | 0.892857 | 0.044643 | 1 | 0.05 | |
Амер. тонна | 907.185 | 0.907185 | 2000 | 17.8517 | 0.892857 | 20 | 1 |
ОБЪЕМ
Табл. 6. Перевод единиц измерения объема
Пересчет | В | ||||||||||
cм3 | м3 | литр (дм3) | дюйм3 | фут3 | ярд3 | UK пинта | UK галлон | US пинта | US галлон | ||
Из | cм3 | 1 | — | 0.001 | 0.061024 | 0.0000353 | — | 0.001760 | 0.00022 | 0.002113 | 0.000264 |
м3 | — | 1 | 1000 | 61023.7 | 35.3147 | 1.30795 | 1759.75 | 219.969 | 2113.38 | 264.172 | |
литр (дм3) | 1000 | 0.001 | 1 | 61.0237 | 0.035315 | 0.001308 | 1.75975 | 0.219969 | 2.11338 | 0.264172 | |
дюйм3 | 16.3871 | — | 0.016387 | 1 | 0.0005787 | 0.0000214 | 0.028837 | 0.003605 | 0.034632 | 0.004329 | |
фут3 | 28316.8 | 0.028317 | 28.3168 | 1728 | 1 | 0.037037 | 49.8307 | 6.22883 | 59.8442 | 7.48052 | |
ярд3 | 764555 | 0.764555 | 764.555 | 46656 | 27 | 1 | 1345.429 | 168.1784 | 1615.793 | 201.974 | |
UK пинта | 568.261 | 0.0005683 | 0.568261 | 34.6774 | 0.020068 | 0.000743 | 1 | 0.125 | 1.20095 | 0.150119 | |
UK галлон | 4546.09 | 0.0045461 | 4.54609 | 277.42 | 0.160544 | 0.005946 | 8 | 1 | 9.6076 | 1.20095 | |
US пинта | 473.176 | 0.0004732 | 0.473176 | 28.875 | 0.01671 | 0.000619 | 0.832674 | 0.104084 | 1 | 0.125 | |
US галлон | 3785.41 | 0.0037854 | 3.785411 | 231 | 0.133681 | 0.004951 | 6.661392 | 0.832674 | 8 | 1 |
ДАВЛЕНИЕ
Табл. 7. Пересчте единиц измерения давления
Пересчет | В | ||||||||
атм | мм рт.ст. | мбар | бар | паскаль | дюйм вод.ст. | дюйм рт.ст. | psi | ||
Из | атм | 1 | 760 | 1013.25 | 1.0132 | 101325 | 406.781 | 29.9213 | 14.6959 |
мм рт.ст. | 0.0013158 | 1 | 1.33322 | 0.001333 | 133.322 | 0.53524 | 0.03937 | 0.019337 | |
мбар | 0.0009869 | 0.750062 | 1 | 0.001 | 100 | 0.401463 | 0.02953 | 0.014504 | |
бар | 0.9869 | 750.062 | 1000 | 1 | 100000 | 401.463 | 29.53 | 14.504 | |
паскаль | 0.0000099 | 0.007501 | 0.01 | 0.00001 | 1 | 0.004015 | 0.0002953 | 0.000145 | |
дюйм вод.ст. | 0.0024583 | 1.86832 | 2.49089 | 0.002491 | 249.089 | 1 | 0.073556 | 0.036127 | |
дюйм рт.ст. | 0.033421 | 25.4 | 33.8639 | 0.0338639 | 3386.39 | 13.5951 | 1 | 0.491154 | |
фунт/дюйм2 | 0.068046 | 51.7149 | 68.9476 | 0.068948 | 6894.76 | 27.6799 | 2.03602 | 1 |
ОБЪЕМНЫЙ ПОКАЗАТЕЛЬ РАСХОДА
Табл. 8. Пересчет единиц измерения объемного расхода
Пересчет | В | ||||||||
литр/сек (дм3/сек) | литр/час | м3/сек | м3/час | cfm | фут3/час | UK галл/час | US галл/час | ||
Из | литр/сек (дм3/сек) | 1 | 3600 | 0.001 | 3.6 | 2.118882 | 127.133 | 791.8884 | 951.019 |
литр/час | 0.000278 | 1 | — | 0.001 | 0.000588 | 0.035315 | 0.219969 | 0.264172 | |
м3сек | 1000 | 3600000 | 1 | 3600 | 2118.88 | 127133 | 791889 | 951019 | |
м3/час | 0.277778 | 1000 | 0.000278 | 1 | 0.588578 | 35.3147 | 219.969 | 264.1718 | |
cfm | 0.471947 | 1699.017 | 0.000472 | 1.699017 | 1 | 60 | 373.73 | 448.831 | |
фут3/час | 0.007866 | 28.3168 | — | 0.028317 | 0.016667 | 1 | 6.228833 | 7.480517 | |
UK галл/час | 0.001263 | 4.54609 | — | 0.004546 | 0.002676 | 0.160544 | 1 | 1.20095 | |
US галл/час | 0.001052 | 3.785411 | — | 0.003785 | 0.002228 | 0.133681 | 0.832674 | 1 |
МОЩНОСТЬ
Табл. 9. Пересчет единиц измерения мощности
Пересчет | В | ||||
Btu/час | Вт | Ккал/час | кВт | ||
Из | Btu/час | 1 | 0.293071 | 0.251996 | 0.000293 |
Вт | 3.41214 | 1 | 0.859845 | 0.001 | |
Ккал/час | 3.96832 | 1.163 | 1 | 0.001163 | |
кВт | 3412.14 | 1000 | 859.845 | 1 |
ЭНЕРГИЯ
Табл. 10. Перевод единиц измерения энергии
Пересчет | В | |||||
Btu | Терм | Дж | КДж | Кал | ||
Из | Btu | 1 | 0.00001 | 1055.06 | 1.055 | 251.996 |
Терм | 100000 | 1 | — | 105 500 | 25 199 600 | |
Дж | 0.00094 | — | 1 | 0.001 | 0.2388 | |
КДж | 0.9478 | 0.000009478 | 1000 | 1 | 238.85 | |
Кал | 0.0039683 | 0.0039683 x 10-5 | 4.1868 | — | 1 |
УДЕЛЬНАЯ ТЕПЛОТА
Табл. 11. Перевод единиц измерения теплоты
Пересчет | В | ||
Btu/lb °F | Дж/кг °C | ||
Из | Btu/lb °F | 1 | 4186.8 |
Дж/кг °C | 0.00023 | 1 |
ТЕПЛОПЕРЕДАЧА
Табл. 12. Перевод единиц измерения коэффициента теплопередачи
Пересчет | В | |||
Btu/ft2час | Вт/м2 | Kcal/m2 | ||
Из | Btu/ft2час | 1 | 3.154 | 2.712 |
Вт/м2 | 0.3169 | 1 | 0.859 | |
Kcal/m2 | 0.368 | 1.163 | 1 |
ТЕПЛОПРОВОДНОСТЬ
Табл. 13. Перевод единиц измерения теплопроводности
Пересчет | В | |||
Btu/фут2 час °F | Вт/м2 °C | Ккал/м2 час°С | ||
Из | Btu/фут2 час °F | 1 | 5.67826 | 4.88243 |
Вт/м2 °C | 0.176110 | 1 | 0.859845 | |
Ккал/м2 час°С | 0.204816 | 1.163 | 1 |
ТЕПЛОЕМКОСТЬ
Табл. 14. Перевод единиц измерения теплоемкости
Пересчет | В | ||
Btu/фунт | КДж/кг | ||
Из | Btu/фунт | 1 | 2.326 |
КДж/кг | 0.4299 | 1 |
ТЕМПЕРАТУРА
Чем отличается киловатт от киловатт-часа
Многие потребители привычно называют показатели расхода электроэнергии, фиксируемые электросчётчиком, киловаттами. Но на самом деле этот показатель измеряется в киловатт-часах (квт*ч), что совсем не одно и то же.
Расход энергии в квт*ч определяется по количеству мощности, затраченной в течение определённого времени.
Пример подобного расчёта:
- для освещения используется лампа накаливания в 0,06 кВт;
- за 6 часов работы (примерное время эксплуатации в течение суток) этот прибор израсходует электроэнергии 0,06 × 6 = 0,36 квт*ч;
- в месяц расход по указанной лампе составит 0,36 × 30 = 10,8 квт*ч.
Аналогичным способом несложно рассчитать суммарный расход электрической энергии в месяц, зная продолжительность включения того или иного оборудования и его мощностные характеристики. Далее можно определить размер полученной экономии за счёт применения менее энергозатратного оборудования и бережливого отношения к потреблению ресурсов.
Правильный перевод единиц мощности электрической энергии очень важен для потребителя. Это позволит обеспечить безопасность эксплуатации оборудования и экономию расхода электроэнергии.
Суммарное значение электрической мощности
Иногда требуется подсчитать общую мощность бытовых потребителей, установленных в доме. Это необходимо для:
- правильного выбора сечения кабеля при устройстве электропроводки;
- подбора контролирующих устройств, включая автоматические выключатели, электросчётчик и пр.;
- компоновки системы проводки в доме.
В конечном итоге правильный учёт суммарной энергоёмкости бытовых приборов обеспечивает эксплуатационную надёжность электропроводки и безопасность эксплуатации домашнего электрохозяйства.
Чтобы подсчитать наибольшую возможную мощность бытовых электроприборов, следует сложить количество ваттов, указанных в технической документации оборудования или непосредственно на самой технике. При проведении расчёта все значения должны быть соответственно преобразованы в одинаковую единицу измерения, учитывая описанный выше порядок.
Отличие кВт от кВт/час
В быту нередко путают кВт и кВт.ч, используя обе единицы для измерения мощности. Киловатт характеризует количество работы, произведенной в единицу времени. 1 Вт – это работа в 1 Дж (джоуль), выполненная за 1 с. Киловатт равен 1000 Дж/с.
Киловатт-часы показывают объем произведенной работы или затраченной энергии. Из определения следует, что кВт.ч есть работа (энергия), выполненная (потребленная) в течение 1 часа устройством мощностью в 1 киловатт.
Простейший подсчет показывает, сколько киловатт потребляет 100 Вт лампа.
Общие сведения
Название единицы измерения мощности электрического тока произошло от фамилии шотландского инженера-изобретателя Джеймса Уатта (1736−1819 гг.), который известен всему миру. Он изобрел паровую машину. Мощность электрического тока измеряется в ваттах (Вт).
Каждый электрический прибор обладает определенной мощностью и потребляет какое-то количество электрической энергии. Ее величина измеряется в ваттах, а для мощных потребителей — в киловаттах. Однако некоторые люди не понимают, что киловатт и киловатт-час являются двумя различными единицами измерения. В этом случае нужно рассмотреть физический смысл основных физических величин, определяющих их: силу тока, напряжение (разность потенциалов), сопротивление (электропроводимость), время работы электрооборудования.
Сила тока
Сила тока — количество электрического заряда, проходящего через проводник за единицу времени. Обозначается величина литерой «I» и измеряется в амперах. Она находится расчетным методом или измеряется при помощи электронно-измерительного прибора, который называется амперметром. Он подключается последовательно к нагрузке. Физический смысл силы тока в 1 А следующий: прохождение количества электрического заряда Qз, равное 1 кулону, через площадь поперечного сечения за 1 секунду. 1 Кл примерно равен 6,241*10 18 отрицательно заряженных частиц (электронов). Формула зависимости силы тока от Qз и времени (t) следующая: I = Qз / t.
Производные единицы измерения: 1 мА (0,001 А) и 1 кА (1000 А). Для удобства расчетов применяются сокращенные названия или аббревиатуры. Ток классифицируется на постоянный и переменный. Постоянный ток не изменяет направление протекания через проводник, но его амплитуда и величина могут меняться. Переменный ток изменяет направление и амплитуду по определенному закону. Его основной характеристикой является частота.
Согласно закону, происходит разделение на синусоидальный и несинусоидальный виды. В первом случае графиком является синусоида, которая зависит от амплитудного значения (Iмакс) и угловой частоты (w). Закон изменения тока с течением времени (t) записывается таким образом: i = Iмакс * sin (w * t). Параметр угловой частоты зависит от частоты тока (f): w = 2 * Пи * f. В этом соотношении величина Пи является значением, приблизительно равным 3,141592653589793238462643.
К току, изменяемому по несинусоидальному закону, относятся любые законы, в которых отсутствует функция синуса (sin). Очень часто в проектировании преобразователей можно встретить ток трапецеидальной и прямоугольной форм. Определить закон изменения электротока можно с помощью осциллографа, дающего его графическое представление. Необходимо учитывать, что ток является векторной величиной, поскольку имеет направление.
Вам это будет интересно Устройство и принцип действия амперметра для измерения тока
Разность потенциалов
Любое вещество состоит из атомов. Каждый атом обладает нейтральным зарядом и содержит элементарные или субатомные частицы: протоны, электроны и нейтроны. Суммарный положительный заряд протонов (Qp) и отрицательный заряд всех электронов (Qe) компенсируют друг друга (Qp = Qe). При воздействии на вещество внешних сил возможны случаи «захвата» атомом другого электрона, находящегося в составе другого атома. В результате чего атом, «захвативший» «чужой электрон», обладает отрицательным зарядом, поскольку в нем количество электронов преобладает над численным показателем числа протонов (Qe>Qp).
Атом, «потерявший» отрицательно заряженную субатомную частицу, называется положительным ионом, поскольку он обладает положительным зарядом (Qp>Qe). Пытаясь восстановить «потерю», он притягивает к себе отрицательную элементарную частицу соседнего атома. Физический процесс обмена частицами продолжается до тех пор, пока значение внешней силы не будет стремиться к 0 (она будет недостаточной для «вырывания» электрона).
При потере или притяжении частицы образуется электромагнитное поле. Его составляющая зависит от заряда иона и бывает положительной или отрицательной. Разность между составляющими разноименных зарядов называется разностью потенциалов или напряжением. Чем больше разность, тем больше величина напряжения. Оно измеряется в вольтах (В, V) и обозначается буквой U. Замерять его значение можно с помощью вольтметра или осциллографа.
Вольтметр подключается параллельно к участку, на котором следует произвести измерение. Кроме того, U рассчитывается по формулам. Электрическое напряжение — работа электромагнитного поля, выполняемая при перемещении точечного заряда из одной точки в другую. Напряжение, равное 1 В — разность потенциалов между двумя точечными положительным и отрицательным зарядами в 1 Кл, на перемещение которых затрачивается энергия электромагнитного поля в 1 Дж. Производными единицами являются следующие: 1 kV = 1000 V, 1 MV = 1000000 V, 1 mV = 0,001 V.
Электрическая проводимость материала
Электрическое сопротивление зависит от электронной конфигурации вещества. Информацию о ней можно получить из периодической таблицы Д. И. Менделеева. По электронной конфигурации вещества можно классифицировать на следующие типы:
- Проводники.
- Полупроводники.
- Диэлектрики (изоляторы).
К проводникам относятся все металлы, электролитические растворы и ионизированные газы. Высокая проводимость обусловлена наличием свободных носителей заряда. В металлах их роль выполняют свободные электроны. Носителями заряда в электролитических растворах являются анионы и катионы. Первые обладают положительным, а вторые — отрицательным зарядами. Во время протекания электротока через раствор (электролиз) анионы притягиваются отрицательно заряженным катодом, а катионы — анодом, обладающим положительным зарядом. В ионизированном газе носителями заряда являются свободные электроны и положительно заряженные ионы.
Взаимодействие атомов между собой происходит при росте температуры. Происходит разрушение кристаллической решетки проводника, вследствие которого появляются дополнительные свободные электроны. Заряженные частицы, протекающие по проводнику, взаимодействуют с ними и замедляют свое движение.
Если электромагнитное поле действует постоянно, то частицы снова возобновляют свое движение. Они снова взаимодействуют с узлами кристаллической решетки. Этот процесс называется электрической проводимостью или сопротивлением вещества. При повышении температуры его величина возрастает.
К полупроводникам относятся вещества, проводящие электроток только при определенных условиях. При внешнем воздействии происходит уменьшение кулоновской силы притяжения субатомных частиц ядром. Электрон «отрывается» и становится свободным, а на его месте образуется дырка. В результате этого происходит образование положительного электромагнитного поля, которое притягивает соседний электрон, а на его месте образуется дырка. Процесс повторяется, и, в результате этого происходит движение электронов и дырок. Величина электропроводимости материала зависит не только от температуры, но и от других показателей:
- Геометрических параметров.
- Тип материала.
- Параметры электротока (напряжение, сила и тип тока).
Вам это будет интересно Принцип работы и устройство электронного мегаомметра
Геометрическими параметрами проводника или полупроводника являются следующие: длина и площадь поперечного сечения. Некоторые вещества вообще не проводят электричество, они называются изоляторами или диэлектриками. В них вообще отсутствуют свободные носители заряда. Принятое обозначение сопротивления литерой «R» и измерение в Омах (сокращение — Ом), а также в таких производных единицах: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом. Измеряется при помощи омметра или вычисляется расчетным методом.
Основные потребители энергии в быту
Изменения климата, ухудшение экологии принуждают задумываться об экономии энергии на всех уровнях. Многие ведут целенаправленную работу по сокращению расхода электричества. Чтобы эффективно экономить энергию, нужно выявить, какие из приборов отличаются наибольшим потреблением.
Из основных потребителей электроэнергии обращают на себя внимание приборы, работающие непрерывно или по много часов. К ним относятся холодильники и бойлеры. К ним также можно причислить системы обогрева и отопления. Следующие по потреблению энергии – приборы освещения и системы подачи воды. Еще одной группой, заслуживающей внимания, являются мощные приборы, работающие эпизодически, но расходующие много энергии. К этой группе относятся пылесосы, полотеры с функцией паровой очистки, стиральные машины и посудомоечные агрегаты, а также строительно-монтажные инструменты.
Над сокращением энергопотребления постоянно работают производители бытовой и промышленной техники. Лет 25 назад настольный компьютер в сутки расходовал около 12 кВт.ч. Сегодня такой уровень характерен для мощных рабочих станций или производительных игровых десктопов. Стандартный офисный ПК в сутки потребляет 2 кВт.ч.
Холодильники не старше 5 лет требуют в сутки 1-1,5 кВт.ч энергии. Эта величина зависит от температуры окружающей среды и объема охлаждаемого пространства. Масляный радиатор, который применяется в качестве дополнительного обогрева комнаты, увеличит потребление на 7-15 кВт.ч, в зависимости от характеристик здания и уличной температуры.
Остальные приборы не вносят большого вклада в общее потребление электрической энергии, за исключением разовых работ.
Основные потребители энергии в быту
В наше время даже люди с достатком задумываются об снижении энергозатрат – вместо обычных ламп накаливания в домах все чаще можно увидеть светодиодные и экономные лампочки. Выбирая бытовую технику, стоит обращать внимание на их экономичность. Практически в каждом доме есть утюг, электрочайник, телевизор, холодильник и т.п. Холодильник обычно работает 24 часа в сутки, норма его потребления – 0,8-1,4 кВт, в зависимости от размеров и температуры в помещении. Суточное потребление электроэнергии телевизором – 2,5 кВт, а компьютера 13,6 киловатт. Электрочайник за 20 минут работы израсходует 1 кВт энергии. А сколько энергии расходуется в вашем доме?
Меры сыпучих тел и жидкостей
Британия |
США |
||
1 пинта | = 0,5506 л | 1 пинта | = 0,473 л |
1 кварта | = 1,136 л | 1 кварта | = 0,9463 л |
1 галлон | = 4,546 л | 1 галлон | = 3,785 л |
1 пек | = 9,092 л | 1 пек | = 8,809 л |
1 бушель | = 36,369 л | 1 бушель | = 35,24 л |
Вес |
|||
1 унция | = 28,35 г | 1 грамм | = 0,035 унции |
1 фунт | = 453,59 г | 1 гектограмм | = 3,527 унции |
1 центнер | = 45,36 г | 1 килограмм | = 2,205 фунта |
1 короткая тонна | = 907,18 г | 1 тонна | = 1,102 кор. тонн |
Что такое «киловатт-час»?
Киловатт-часы – это единицы, используемые для измерения количества потребляемой электрическим прибором энергии за один час. Для примера рассмотрим работу компьютера мощностью 0,67 кВт. Допустим, он проработал два часа. Сколько электроэнергии он израсходовал за это время? Все очень просто: 0,67 кВт умножаем на два часа и получаем 1,34 кВт*ч. Обычная лампа накаливания на 100 Вт потребляет в час 0,1 кВт*ч энергии, соответственно, если ее не выключать в течение суток, то она израсходует 2,4 кВт.
Источники
- https://oschetchike.ru/elektroenergii/skolko-vatt-v-kilovatte
- https://rusenergetics.ru/polezno-znat/skolko-vatt-v-kilovatte
- https://knigaelektrika.ru/teoriya/kak-perevesti-kilovatty-v-vatty.html
- https://PoUchetu.ru/interesnoe/skolko-vatt-v-1-kvt
- https://www.calc.ru/kilovatt-v-vatt.html
- https://electrikagid.ru/electrobezopastnost/poschitaem-skolko-vatt-v-kilovatte.html
- https://amperof.ru/teoriya/skolko-vatt-v-kilovatte.html
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.
Если действующая на тело сила вызывает его перемещение s, то действие этой силы характеризуется величиной, называемой механической работой (или, сокращенно, просто работой).
Механическая работа А — скалярная величина, равная произведению модуля силы F, действующей на тело, и модуля перемещения s, совершаемого телом в направлении действия этой силы.
Если направления перемещения тела и приложенный силы не совпадают, то работу можно вычислить как произведение модулей силы и перемещения, умноженному на косинус угла α между векторами силы и перемещения
(рис. 1.18.1):
Работа является скалярной величиной. Она может быть как положительной (0° ≤ α < 90°), так и отрицательной (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж).
Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.
|
Рисунок 1.18.1. Работа силы |
Если проекция силы
на направление перемещения
не остается постоянной, работу следует вычислять для малых перемещений Δsi и суммировать результаты:
Это сумма в пределе (Δsi → 0) переходит в интеграл.
Графически работа определяется по площади криволинейной фигуры под графиком Fs(x) (рис. 1.18.2).
|
Рисунок 1.18.2. Графическое определение работы. ΔAi = FsiΔsi |
Примером силы, модуль которой зависит от координаты, может служить сила упругости пружины, подчиняющаяся закону Гука. Для того, чтобы растянуть пружину, к ней нужно приложить внешнюю силу модуль которой пропорционален удлинению пружины (рис. 1.18.3).
|
Рисунок 1.18.3. Растянутая пружина. Направление внешней силы k – жесткость пружины. |
Зависимость модуля внешней силы от координаты x изображается на графике прямой линией (рис. 1.18.4).
|
Рисунок 1.18.4. Зависимость модуля внешней силы от координаты при растяжении пружины |
По площади треугольника на рис. 1.18.4 можно определить работу, совершенную внешней силой, приложенной к правому свободному концу пружины:
Этой же формулой выражается работа, совершенная внешней силой при сжатии пружины. В обоих случаях работа упругой силы равна по модулю работе внешней силы
и противоположна ей по знаку.
Если к телу приложено несколько сил, то общая работа всех сил равна алгебраической сумме работ, совершаемых отдельными силами. При поступательном движении тела, когда точки приложения всех сил совершают одинаковое перемещение, общая работа всех сил равна работе равнодействующей приложенных сил.
Модель. Механическая работа. |
Мощность
Работа силы, совершаемая в единицу времени, называется мощностью. Мощность N это физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:
В Международной системе (СИ) единица мощности называется ватт (Вт). Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.