Определение мощности
Допустим, нам необходимо убрать урожай пшеницы с поля площадью 100 га. Это можно сделать вручную или с помощью комбайна. Очевидно, что пока человек обработает 1 га площади, комбайн успеет сделать намного больше. В данном случае разница между человеком и техникой — именно то, что называют мощностью. Отсюда вытекает первое определение.
Мощность в физике — это количество работы, которая совершается за единицу времени.
Рассмотрим другой пример: между точкой А и точкой Б расстояние 15 км, которое человек проходит за 3 часа, а автомобиль может проехать всего за 10 минут. Понятно, что одно и то же количество работы они сделают за разное время. Что показывает мощность в данном случае? Как быстро или с какой скоростью выполняется некая работа.
В электромеханике эта величина имеет еще одно определение.
Мощность — это скалярная физическая величина, которая характеризует мгновенную скорость передачи энергии от системы к системе или скорость преобразования, изменения, потребления энергии.
Напомним, что скалярными величинами называются те, значение которых выражается только числом (без вектора направления).
Мощность человека в зависимости от деятельности
Вид деятельности |
Мощность, Вт |
---|---|
Неспешная ходьба |
60–65 |
Бег со скоростью 9 км/ч |
750 |
Плавание со скоростью 50 м/мин |
850 |
Игра в футбол |
930 |
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Пятерка по физике у тебя в кармане!
Решай домашку по физике на изи. Подробные решения помогут разобраться в сложной теме и получить пятерку!
Как обозначается мощность: единицы измерения
В таблице выше вы увидели обозначение в ваттах, и читая инструкции к бытовой технике, можно заметить, что среди характеристик прибора обязательно указано количество ватт. Это единица измерения механической мощности, используемая в международной системе СИ. Она обозначается буквой W или Вт.
Измерение мощности в ваттах было принято в честь шотландского ученого Джеймса Уатта — изобретателя паровой машины. Он стал одним из родоначальников английской промышленной революции.
В физике принято следующее обозначение мощности: 1 Вт = 1 Дж / 1с.
Это значит, что за 1 ватт принята мощность, необходимая для совершения работы в 1 джоуль за 1 секунду.
В каких единицах еще измеряется мощность? Ученые-астрофизики измеряют ее в эргах в секунду (эрг/сек), а в автомобилестроении до сих пор можно услышать о лошадиных силах.
Интересно, что автором этой последней единицы измерения стал все тот же шотландец Джеймс Уатт. На одной из пивоварен, где он проводил свои исследования, хозяин накачивал воду для производства с помощью лошадей. И Уатт выяснил, что 1 лошадь за секунду поднимает около 75 кг воды на высоту 1 метр. Вот так и появилось измерение в лошадиных силах. Правда, сегодня такое обозначение мощности в физике считается устаревшим.
Одна лошадиная сила — это мощность, необходимая для поднятия груза в 75 кг за 1 секунду на 1 метр. 🐴
Единицы измерения |
Вт |
---|---|
1 ватт |
1 |
1 киловатт |
103 |
1 мегаватт |
106 |
1 эрг в секунду |
10-7 |
1 метрическая лошадиная сила |
735,5 |
Подготовка к ОГЭ по физике онлайн поможет снять стресс перед экзаменом и получить высокий балл.
Все формулы мощности
Зная определения, несложно понять формулы мощности, используемые в разных разделах физики — в механике и электротехнике.
В механике
Механическая мощность (N) равна отношению работы ко времени, за которое она была выполнена.
Основная формула:
N = A / t, где A — работа, t — время ее выполнения.
Если вспомнить, что работой называется произведение модуля силы, модуля перемещения и косинуса угла между ними, мы получим формулу измерения работы.
Если направления модуля приложения силы и модуля перемещения объекта совпадают, угол будет равен 0 градусов, а его косинус равен 1. В таком случае формулу можно упростить:
A = F × S
Используем эту формулу для вычисления мощности:
N = A / t = F × S / t = F × V
В последнем выражении мы исходим из того, что скорость (V) равна отношению перемещения объекта на время, за которое это перемещение произошло.
В электротехнике
В общем случае электрическая мощность (P) говорит о скорости передачи энергии. Она равна произведению напряжения на участке цепи на величину тока, проходящего по этому участку.
P = I × U, где I — сила тока, U — напряжение.
В электротехнике существует несколько видов мощности: активная, реактивная, полная, пиковая и т. д. Но это тема отдельного материала, сейчас же мы потренируемся решать задачи на основе общего понимания этой величины. Посмотрим, как найти мощность, используя вышеуказанные формулы по физике.
Задача 1
Допустим, человек поднимает ведро воды из колодца, прикладывая силу 60 Н. Глубина колодца составляет 10 м, а время, необходимое для поднятия — 30 сек. Какова будет мощность человека в этом случае?
Решение:
Найдем вначале величину работы, используя тот факт, что мы знаем расстояние перемещения (глубину колодца 10 м) и приложенную силу 60 Н.
A = F × S = 60 Н × 10 м = 600 Дж
Когда известно значение работы и времени, найти мощность несложно:
N = A / t = 600 Дж / 30 сек = 20 Вт
Ответ: мощность человека при поднятии ведра — 20 ватт.
Задача 2
В комнате включена лампа мощностью 100 Вт. Напряжение домашней электросети — 220 В. Какая сила тока проходит через эту лампу?
Решение:
Мы знаем, что Р = 100 Вт, а U = 220 В.
Поскольку P = I × U, следовательно I = P / U.
I = 100 / 220 = 0,45 А.
Ответ: через лампу пройдет сила тока 0,45 А.
Вопросы для самопроверки
-
Что характеризует механическая мощность?
-
Какие существуют единицы измерения мощности в физике?
-
Какая из единиц измерения считается устаревшей?
-
Мощность можно назвать скалярной величиной? Что это означает?
-
Как из формулы нахождения мощности получить работу?
-
Какой буквой обозначается мощность в механике, а какой — в электротехнике?
-
Какую работу производит за 30 минут устройство мощностью 600 Вт?
-
Как узнать напряжение в сети, если мы знаем мощность подключенного к ней прибора и силу тока, проходящую через прибор?
-
Если в течение 1 часа автомобиль №1 едет со скоростью 60 км/ч, а автомобиль №2 — со скоростью 90 км/ч, одинаковую ли мощность они развивают в это время?
-
Допустим, автобус отвез пассажиров из города А в город В за 1 час. Если он планирует вернуться в город А пустым по той же трассе и потратить на это 1 час, ему понадобится развить такую же мощность или меньшую?
Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.
Если на тело действует сила и тело под действием этой силы перемещается, то говорят, что сила совершает работу.
Механическая работа – это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы и вектором перемещения (или скорости).
A = Fs cos α
Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю.
В системе СИ работа измеряется в джоулях (Дж). Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.
[1 Дж=1 Н·м]
Работа силы, совершаемая в единицу времени, называется мощностью.
Мощность N – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:
N=A/t
В Международной системе (СИ) единица мощности называется ватт (Вт). Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.
Внесистемная единица мощности 1 л.с.=735 Вт
Связь между мощностью и скоростью при равномерном движении:
N=A/t так как A=FScosα тогда N=(FScosα)/t, но S/t = v следовательно
N=Fvcos α
В технике используются единицы работы и мощности:
1 Вт·с = 1 Дж; 1Вт·ч = 3,6·103 Дж; 1кВт·ч = 3,6·106 Дж
Если тело способно совершить работу, то говорят, что оно обладает энергией.
Механическая энергия тела – это скалярная величина, равная максимальной работе, которая может быть совершена в данных условиях.
Обозначается Е Единица энергии в СИ [1Дж = 1Н*м]
Механическая работа есть мера изменения энергии в различных процессах А = ΔЕ.
Различают два вида механической энергии – кинетическая Ек и потенциальная Еp энергия.
Полная механическая энергия тела равна сумме его кинетической и потенциальной энергий
Е = Ек + Еp
Кинетическая энергия – это энергия тела, обусловленная его движением.
Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:
Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m, движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:
Если тело движется со скоростью , то для его полной остановки необходимо совершить работу
Наряду с кинетической энергией или энергией движения в физике важную роль играет понятиепотенциальной энергии или энергии взаимодействия тел.
Потенциальная энергия – энергия тела, обусловленная взаимным расположением взаимодействующих между собой тел или частей одного тела.
Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями. Такие силы называются консервативными. Работа консервативных сил на замкнутой траектории равна нулю.
Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.
Потенциальная энергия тела в поле силы тяжести (потенциальная энергия тела, поднятого над землёй):
Ep = mgh
Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.
Понятие потенциальной энергии можно ввести и для упругой силы. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.
Можно просто удлинить пружину на величину x, или сначала удлинить ее на 2x, а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях упругая сила совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A, взятой с противоположным знаком :
где k – жесткость пружины.
Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину
Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.
Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:
Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.
Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:
A = –(Ep2 – Ep1).
По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:
A = Ek2 – Ek1
Следовательно Ek2 – Ek1 = –(Ep2 – Ep1) или Ek1 + Ep1 = Ek2 + Ep2.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.
Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона.
Сумму E = Ek + Ep называют полной механической энергией.
Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию, и наоборот, или переход энергии от одного тела к другому.
Е = Ек + Еp = const
Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.
В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.
Сила трения не является консервативной. Работа силы трения зависит от длины пути.
Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).
Работа – физическая величина
В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».
Рис 1. Работа в повседневном смысле слова
Мы же будем говорить здесь о работе с точки зрения физики.
Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.
Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.
Рис 2. Работа – это физическая величина
Формула справедлива, когда на тело действует постоянная сила.
В международной системе единиц СИ работа измеряется в джоулях.
Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.
Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.
Рис 3. Джеймс Прескотт Джоуль (1818 – 1889)
Работа может равняться нулю и быть отрицательной
Из формулы для вычисления работы следует, что возможны три случая, когда работа равна нулю.
Первый случай – когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.
Второй случай – когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.
Третий случай – когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы.
Рис 4. Три случая, когда работа равна нулю
Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы. Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).
Мощность – быстрота выполнения работы
Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу.
Рис 5. Одну и ту же работу можно выполнить за разное время
Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.
Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.
Мощность обозначается латинской буквой N.
Единицей измерения мощности я системе СИ является ватт.
Один ватт – это мощность, при которой работа в один джоуль совершается за одну секунду.
Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.
Рис 6. Джеймс Уатт (1736 – 1819)
Еще одна формула для вычисления мощности
Объединим формулу для вычисления работы с формулой для вычисления мощности.
Вспомним теперь, что отношение пути, пройденного телом, S, ко времени движения t представляет собой скорость движения тела v.
Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы.
Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.
Мощность (физика)
- Мощность (физика)
-
Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
Эффективная мощность, мощность двигателя, отдаваемая рабочей машине непосредственно или через силовую передачу. Различают полезную, полную и номинальную Э. м. двигателя. Полезной называют Э. м. двигателя за вычетом затрат мощности на приведение в действие вспомогательных агрегатов или механизмов, необходимых для его работы, но имеющих отдельный привод (не от двигателя непосредственно). Полная Э. м. — мощность двигателя без вычета указанных затрат. Номинальная Э. м., или просто номинальная мощность, — Э. м., гарантированная заводом-изготовителем для определённых условий работы. В зависимости от типа и назначения двигателя устанавливаются Э. м., регламентируемые стандартами или техническими условиями (например, наибольшая мощность судового реверсивного двигателя при определённой частоте вращения коленчатого вала в случае заднего хода судна — так называемая мощность заднего хода, наибольшая мощность авиационного двигателя при минимальном удельном расходе топлива — так называемая крейсерская мощность и т. п.). Э. м. зависит от форсирования (интенсификации) рабочего процесса, размеров и механического кпд двигателя.[1]
— средняя мощность
— мгновенная мощность
Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.
Содержание
- 1 Единицы измерения
- 2 Мощность в механике
- 3 Электрическая мощность
- 4 Приборы для измерения мощности
- 5 Примечания
- 6 См. также
- 7 Ссылки
Единицы измерения
В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.
Другой распространённой единицей измерения мощности является лошадиная сила.
Соотношения между единицами мощности
Единицы Вт кВт МВт кгс·м/с эрг/с л. с. 1 ватт 1 10-3 10-6 0,102 107 1,36·10-3 1 киловатт 103 1 10-3 102 1010 1,36 1 мегаватт 106 103 1 102·103 1013 1,36·103 1 килограмм-сила-метр в секунду 9,81 9,81·10-3 9,81·10-6 1 9,81·107 1,33·10-2 1 эрг в секунду 10-7 10-10 10-13 1,02·10-8 1 1,36·10-10 1 лошадиная сила[2] 735,5 735,5·10-3 735,5·10-6 75 7,355·109 1 Мощность в механике
Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:
F — сила, v — скорость, α — угол между вектором скорости и силы.
Частный случай мощности при вращательном движении:
M — момент,
— угловая скорость,
— число пи, n — частота вращения (об/мин).
Электрическая мощность
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
S=P+jQ
S — Полная мощность, ВА
P — Активная мощность, Вт
Q — Реактивная мощность, ВАр
Приборы для измерения мощности
- Ваттметр
- Варметр
- Фазометр
Примечания
- ↑ Большая Советская энциклопедия
- ↑ «метрическая лошадиная сила»
См. также
- Энергия
Ссылки
- Влияние формы электрического тока на его действие. Журнал «Радио», номер 6, 1999 г.
Wikimedia Foundation.
2010.
Полезное
Смотреть что такое «Мощность (физика)» в других словарях:
-
ФИЗИКА — наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, св ва и строение материи и законы её движения. Понятия Ф. и её законы лежат в основе всего естествознания. Ф. относится к точным наукам и изучает количеств … Физическая энциклопедия
-
Физика — Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия
-
Физика — I. Предмет и структура физики Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… … Большая советская энциклопедия
-
Физика высоких плотностей энергии — Физика высоких плотностей энергий (англ. High Energy Density Physics, HED Physics) раздел физики на стыке физики конденсированного состояния и физики плазмы, занимающийся изучением систем, имеющих высокую плотность энергии. Под высокой … Википедия
-
Электрическая мощность — Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность … Википедия
-
Реактивная мощность — Электрическая мощность физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Содержание 1 Мгновенная электрическая мощность 2 Мощность постоянного тока … Википедия
-
Интенсивность (физика) — У этого термина существуют и другие значения, см. Интенсивность. Интенсивность Размерность MT−3 Единицы измерения СИ Вт/м² … Википедия
-
Варметр — Ваттметр (ватт + гр. μετρεω измеряю) измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Содержание 1 Классификация 2 Ваттметры низкой частоты и постоянного тока … Википедия
-
Измеритель мощности — Ваттметр (ватт + гр. μετρεω измеряю) измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Содержание 1 Классификация 2 Ваттметры низкой частоты и постоянного тока … Википедия
-
Мощности измеритель — Ваттметр (ватт + гр. μετρεω измеряю) измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала. Содержание 1 Классификация 2 Ваттметры низкой частоты и постоянного тока … Википедия
Содержание:
Мощность:
Одинаковую работу можно совершить за разные промежутки времени. Например, можно поднять груз за минуту, а можно поднимать этот же груз в течение часа.
Физическую величину, равную отношению совершенной работы
Единицей мощности в SI является джоуль в секунду (Дж/с), или ватт (Вт), названный так в честь английского изобретателя Дж. Уатта. Один ватт — это такая мощность, при которой работу в 1 Дж совершают за 1 с. Итак,
Человек может развивать мощность в сотни ватт. Чтобы оценить, насколько могущество человеческого разума, создавшего двигатели, больше «могущества» человеческих мускулов, приведем такие сравнения:
- мощность легкового автомобиля примерно в тысячу раз больше средней мощности человека;
- мощность авиалайнера примерно в тысячу раз больше мощности автомобиля;
- мощность космического корабля примерно в тысячу раз больше мощности самолета.
Мощность
Механическая работа всегда связана с движением тел. А движение происходит во времени. Поэтому и выполнение работы, как и превращение механической энергии, всегда происходит на протяжении определенного времени.
Работа выполняемая на протяжении определенного времени:
Простейшие наблюдения показывают, что время выполнения работы может быть разным. Так, школьник может подняться по лестнице на пятый этаж за 1-2 мин, а пожилой человек — не меньше чем за 5 мин. Грузовой автомобиль КрАЗ может перевезти определенный груз на расстояние 50 км за 1 ч. Но если этот груз частями начнет перевозить легковой автомобиль с прицепом, то потратит на это не меньше 12 ч.
Для описания процесса выполнения работы, учитывая его скорость, используют физическую величину, которая называется мощностью.
Что такое мощность
Мощность — это физическая величина, которая показывает скорость выполнения работы и равна отношению работы ко времени, за которое эта работа выполняется.
Так как при выполнении работы происходит превращение энергии, то можно считать, что мощность характеризует скорость превращения энергии.
Как рассчитать мощность
Для расчета мощности нужно значение работы разделить на время, за которое эта работа была выполнена:
Если мощность обозначить латинской буквой , то формула для расчета мощности будет такой
Единицы мощности
Для измерения мощности используется единица ватт (Вт). При мощности 1 Вт работа 1 Дж выполняется за 1 с:
Единица мощности названа в честь английского механика Джеймса Уатта, который внес значительный вклад в теорию и практику построения тепловых двигателей.
Джеймс Уатт (1736-1819) — английский физик и изобретатель.
Главная заслуга Уатта в том, что он отделил водяной конденсатор от нагревателя и сконструировал насос для охлаждения конденсатора. Фактически он увеличил разность температур между нагревателем и конденсатором (холодильником), благодаря чему увеличил экономичность паровой машины. Позже теоретически это обоснует Сади Карно.
Он один из первых высказал предположение, что вода — это сложное вещество, состоящее из водорода и кислорода.
Как и для других физических величин, для единицы мощности существуют производные единицы:
Пример №1
Определить мощность подъемного крана, если работу 9 МДж он выполняет за 5 мин.
Дано:
Решение
По определению поэтому
Ответ. Мощность крана 30 кВт.
Пример №2
Человек массой 60 кг поднимается на пятый этаж дома за 1 мин. Высота пяти этажей дома равна 16 м. Какую мощность развивает человек?
Дано:
Решение
По определению
Работа определяется
Тогда
Ответ. Человек развивает мощность 160 Вт.
Зная мощность и время, можно рассчитать работу:
Скорость движения зависит от мощности
Мощность связана со скоростью соотношением:
где — сила, которая выполняет работу;
— скорость движения.
Если известны мощность двигателя и значения сил сопротивления, то можно рассчитать возможную скорость автомобиля или другой машины, которая выполняет работу:
Таким образом, из двух автомобилей при равных силах сопротивления большую скорость будет иметь тот, у которого мощность двигателя больше.
Каждый конструктор знает, что для увеличения скорости движения автомобиля, самолета или морского корабля нужно или увеличивать мощность двигателя, или уменьшать силы сопротивления. Поскольку увеличение мощности связано с увеличением потребления топлива, то средствам современного транспорта, как правило, придают специфическую обтекаемую форму, при которой сопротивление воздуха будет наименьшим, а все подвижные части изготавливают так, чтобы сила трения была минимальной.
Итоги:
- Существуют два вида механической энергии: кинетическая и потенциальная.
- Если тело перемещается или деформируется под действием силы, то выполняется механическая работа.
- Простыми механизмами являются рычаги и блоки.
- Ни один простой механизм не дает выигрыша в работе.
- Качество механизма определяется коэффициентом полезного действия, который определяет часть полезной работы в общей выполненной работе.
- Тело, при перемещении которого может быть выполнена работа, обладает энергией.
- Взаимодействующие тела обладают потенциальной энергией.
- Движущееся тело обладает кинетической энергией, которая зависит от скорости и массы тела.
- Потенциальная и кинетическая энергии могут превращаться друг в друга. Такие превращения происходят в равной мере, если отсутствуют силы трения.
- Сумму кинетической и потенциальной энергий называют полной механической энергией системы.
- В замкнутой системе при отсутствии сил трения сумма кинетической и потенциальной энергий остается постоянной.
- Закон сохранения и превращения энергии подтверждает невозможность существования вечного двигателя (perpetuum mobile).
- Мощность характеризует скорость превращения одного вида энергии в другой.
Механическая работа и мощность
С помощью импульса невозможно описать все случаи взаимодействия. Поэтому в физике применяют еще и понятие механической работы.
В механике работа зависит от значения и направления силы, а также перемещения точки ее приложения. Из курса физики 8 класса вам известно, что
A = Fs,
где F — значение силы, действующей на тело; s — модуль перемещения тела.
Если сила F постоянна, а перемещение прямолинейное (рис. 2.65), то работа
где s = — угол между направлением действия силы и перемещения.
Робота является величиной скалярной. Произведение — проекция действующей силы на направление перемещения.
Легко заметить, что если < 90°, то работа силы положительная, при
= 90° (сила перпендикулярна к перемещению) работа равна нулю, а при
— отрицательная.
Пример №3
Девочка тянет санки равномерно, прикладывая к веревке силу 50 Н. Веревка натягивается под углом 30° к горизонту (рис. 2.66). Какую работу выполнит девочка, переместив санки на 20 м?
Дано:
F = 50 Н,
s = 20 м, = 30°.
А-?
Решение
По определению
Соответственно
Ответ: А = 870 Дж (работа силы положительная, поскольку cos 30° > 0).
- Заказать решение задач по физике
Пример №4
Решим предыдущую задачу для случая, когда девочка удерживает санки, съехавшие с горки (рис. 2.67). В данном случае = 150°.
Дано:
F = 50 Н, s = 20 м,
= 150°.
А — ?
Решение
А = Fscosa;
А = 50 Н • 20 м • (-0,87) -870 Дж.
Ответ: А = -870 Дж (работа силы отрицательная, поскольку cos 150° < 0).
Таким образом, в зависимости от направления действия силы по отношению к перемещению работа может иметь положительные и отрицательные значения.
Например, работа, которую выполняет двигатель автомобиля, будет положительной, поскольку направление силы тяги автомобиля совпадает с направлением его движения. Положительной будет и работа человека, поднимающего какой-либо груз с земли на определенную высоту. Силы трения, действующие на автомобиль, выполняют отрицательную работу, поскольку направлены в противоположном направлении к перемещению.
Возможны случаи, когда работа равна нулю, хотя перемещение тела происходит. Например, если = 90°, то работа силы равна нулю, поскольку cos90° = 0. Сила тяжести, действующая на спутник Земли, который движется по круговой орбите, работы не выполняет.
Мощность — это физическая величина, характеризующая скорость совершения работы. Поскольку во время выполнения работы происходит превращение энергии, можно сделать вывод, что мощность показывает скорость превращения одного вида энергии в другой.
В механике мощность обозначают буквой N и рассчитывают по формуле
N= — =—,
t t
где — изменение энергии; А — работа; t — время.
Если известны мощность и время, за которое совершена работа, то можно рассчитать и саму работу:
A = Nt.
Основная единица измерения мощности — ватт (Вт):
Всё о мощности
Одна и та же работа в разных случаях может быть выполнена за различные промежутки времени, т. е. она может совершаться неодинаково быстро. Например, при подъеме груза на определенную высоту подъемным краном (рис. 148) будет затрачено гораздо меньше времени, чем при использовании лебедки.
Для характеристики процесса выполнения работы важно знать не только ее численное значение, но и время, за которое она выполняется. Очевидно, что чем меньшее время требуется для выполнения данной работы, тем эффективнее работает машина, механизм и др.
Величина, характеризующая быстроту совершения работы, называется мощностью. Ее обычно обозначают буквой Р.
Если в течение промежутка времени Δt была совершена работа А, то средняя мощность равна отношению работы к этому промежутку времени:
Из определения видно, что мощность численно равна работе, совершаемой в единицу времени. Таким образом, единицей мощности является джоуль в секунду . Эта единица получила название ватт (Вт): 1 Вт = 1
. Это название дано в честь английского ученого Джеймса Уатта — изобретателя универсального парового двигателя. Уаттом была впервые введена единица мощности, которая и до сих пор используется для характеристики мощности различных двигателей — 1 лошадиная сила (1 л. с. = 736 Вт).
Понятно, что во времена Уатта на заре технической революции мощность построенной паровой машины было естественно сравнить с мощностью лошади — единственным в то время «двигателем».
Может ли человек развивать мощность, равную 1 л. с.? Ответ на этот вопрос положительный. Рассмотрим разбег спортсмена на короткие дистанции. Хорошие спортсмены дистанцию в 100 м пробегают за 10 с, т. е. их средняя скорость 10 . Разбег длится 3 с, а работа A, которую совершают мышцы спортсмена, не может быть меньше, чем кинетическая энергия
, приобретенная им за время разбега. Следовательно, средняя мощность не меньше, чем
Если предположить, что масса спортсмена т = 80 кг, то
Разумеется, развивать такую мощность длительное время не сможет даже очень тренированный человек.Если известна мощность, то работа выражается равенством:
A = P∆t. (2)
Это позволяет ввести еще одну единицу работы (а значит, и энергии) следующим путем. За единицу работы можно принять работу, которая совершается некоторой силой в течение 1 с при мощности в 1 Вт. Она называется ватт-секундой. Понятно, что 1 Вт.c = 1 Дж. Часто используются более крупные внесистемные единицы работы и энергии: киловатт-час (кВт.ч) и мегаватт-час (МВт . ч):
1 кВт .ч= 1000кВт.3600 с = 3,6∙ 106 Дж;
1 МВт.ч= 1000кВт.3600 с = 3,6∙ 109 Дж.
При движении любого тела на него в общем случае действует несколько сил. Каждая сила совершает работу, и, следовательно, для каждой силы мы можем вычислить мощность.
Наиболее общее выражение для работы постоянной силы, направленной под углом к направлению движения. А = F∆rcos
. Поэтому средняя мощность этой силы:
(3)
так как — модуль средней скорости тела.
Ясно, что если модуль силы в некоторой момент времени равен F и модуль мгновенной скорости υ, а угол между ними , то мгновенное значение мощности этой силы:
P = Fυcos. (4)
Как следует из формулы (4), при заданной мощности мотора сила тяги тем меньше, чем больше скорость движения автомобиля. Вот почему водители при подъеме в гору, когда нужна наибольшая сила тяги, переключают двигатель на пониженную передачу. Для движения по горизонтальному участку с постоянной скоростью достаточно, чтобы сила тяги преодолевала силу сопротивления движению. Формула (4) позволяет объяснить, что быстроходные поезда, автомобили, корабли, самолеты нуждаются в двигателях большой мощности и конструкции, обеспечивающей как можно меньшую силу сопротивления.
Любой двигатель или механическое устройство предназначены для выполнения определенной механической работы. Эта работа называется полезной работой. Для двигателя автомобиля — это работа по его перемещению, для токарного станка — работа по вытачиванию детали и т. п.
В любой машине, в любом двигателе полезная работа всегда меньше той энергии, которая затрачивается для приведения их в действие, потому что всегда существуют силы трения, работа которых приводит к нагреванию каких-либо частей устройства. А нагревание нельзя считать полезным результатом действия машины.
Поэтому каждое устройство характеризуется особой величиной, которая показывает, насколько эффективно используется подводимая к нему энергия. Эта величина называется коэффициентом полезного действия (КПД) и обычно обозначается греческой буквой η (эта).
Коэффициентом полезного действия называется отношение полезной )аботы, совершенной машиной за некоторый промежуток времени, ко всей утраченной работе (подведенной энергии) за тот же промежуток времени:
(5)
Коэффициент полезного действия обычно выражается в процентах, поскольку и полезную, и затраченную работы можно представить как произведение мощности на промежуток времени, в течение которого работала машина, то коэффициент полезного действия можно определить следующим образом:
где Pn и Р3 — полезная мощность и затраченная мощность соответственно.
Главные выводы:
- Мощность численно равна работе, которую совершает сила в единицу времени.
- Мощность силы равна произведению силы на скорость тела и косинус угла между направлением силы и скорости в данный момент времени.
- Коэффициентом полезного действия называется отношение полезной работы, совершенной машиной за некоторый промежуток времени, ко всей затраченной работе (подведенной энергии) за тот же промежуток времени.
- Взаимодействие тел
- Механическая энергия и работа
- Золотое правило механики
- Потенциальная энергия
- Криволинейное движение
- Ускорение точки при ее движении по окружности
- Инерциальные системы отсчета
- Энергия в физике
Энергетические характеристики движения
вводятся на основе понятия механической
работы или работы силы.
Работой A, совершаемой постоянной
силой
называется
физическая величина, равная произведению
модулей силы и перемещения, умноженному
на косинус угла α между векторами силы
и
перемещения
(рис. 1.18.1):
|
Работа является скалярной величиной.
Она может быть как положительна
(0° ≤ α < 90°), так и отрицательна
(90° < α ≤ 180°). При α = 90°
работа, совершаемая силой, равна нулю.
В системе СИ работа измеряется в джоулях
(Дж).
Джоуль равен работе, совершаемой силой
в 1 Н на перемещении 1 м в направлении
действия силы.
1 |
Рисунок 1.18.1. Работа силы |
Если проекция
силы
на
направление перемещения
не
остается постоянной, работу следует
вычислять для малых перемещений
и
суммировать результаты:
|
Это сумма в пределе (Δsi → 0)
переходит в интеграл.
Графически работа определяется по
площади криволинейной фигуры под
графиком Fs(x) (рис. 1.18.2).
2 |
Рисунок 1.18.2. Графическое |
Примером силы, модуль которой зависит
от координаты, может служить упругая
сила пружины, подчиняющаяся закону
Гука. Для того, чтобы растянуть пружину,
к ней нужно приложить внешнюю силу
модуль
которой пропорционален удлинению
пружины (рис. 1.18.3).
3 |
Рисунок 1.18.3. Растянутая |
Зависимость модуля внешней силы от
координаты x изображается на графике
прямой линией (рис. 1.18.4).
4 |
Рисунок 1.18.4. Зависимость |
По площади треугольника на рис. 1.18.4
можно определить работу, совершенную
внешней силой, приложенной к правому
свободному концу пружины:
|
Этой же формулой выражается работа,
совершенная внешней силой при сжатии
пружины. В обоих случаях работа упругой
силы
равна
по модулю работе внешней силы
и
противоположна ей по знаку.
Если к телу приложено несколько сил, то
общая работа всех сил равна алгебраической
сумме работ, совершаемых отдельными
силами, и равна работе равнодействующей
приложенных сил.
Работа силы, совершаемая в единицу
времени, называется мощностью.
Мощность N – физическая величина,
равная отношению работы A к промежутку
времени t, в течение которого совершена
эта работа:
|
В Международной системе (СИ) единица
мощности называется ватт (Вт). Ватт
равен мощности силы, совершающей работу
в 1 Дж за время 1 с.
|
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание:
- § 1 Мощность
- § 2 Единица мощности
- § 3 Решение задач
- § 4 Важно запомнить
§ 1 Мощность
В этом уроке мы разберем, что такое мощность, единицы измерения мощности, от чего зависит мощность.
Для введения новой физической величины – мощности – рассмотрим следующую задачу.
На стройке работают два подъемных крана. Оба поднимают плиты на высоту 15 м. Первый кран поднимает плиты массой 3 т и тратит на подъем каждой плиты 1 минуту. Второй кран поднимает плиты массой 5 т и тратит на подъем каждой 2 минуты. Какой кран совершает большую работу за единицу времени, например, за одну секунду?
Вычислим работу каждого крана по поднятию одной плиты. Работу совершает сила тяги двигателя крана. Так как кран поднимает плиты вверх, то преодолевает силу тяжести, и сила тяги двигателя по модулю будет равна силе тяжести. Работа равна произведению модуля силы на пройденный путь.
Полученные ответы показывают, что первый кран выполняет большую работу за 1 секунду, то есть быстрее совершает работу. Говорят, что мощность первого крана больше, чем второго.
Итак, мощность – это физическая величина, характеризующая быстроту выполнения работы и равная отношению работы ко времени выполнения.
Мощность обозначается буквой N и вычисляется по формуле:
Если за каждую единицу времени совершается одинаковая работа, то мощность – постоянная величина, в остальных случаях по данной формуле определяют среднюю мощность.
§ 2 Единица мощности
За единицу мощности принимают такую мощность, при которой за 1 секунду совершается работа 1 Джоуль. Эту единицу в честь английского ученого Джеймса Уатта называют Ватт:
В технике используют кратные единицы:
Проанализируем формулу мощности N = A : t . Мощность тем больше, чем большая работа совершается за единицу времени. За одно и то же время трактор вспашет большую площадь поля, чем вскопает человек. Значит, мощность трактора больше. С другой стороны, мощность тем больше, чем меньше времени затрачено на совершение работы.
§ 3 Решение задач
Рассмотрим решение задачи:
Итак, чтобы найти работу, нужно мощность умножить на время выполнения работы.
Решим еще одну задачу.
§ 4 Важно запомнить
Мощность – это скалярная физическая величина, характеризующая быстроту выполнения работы и равная отношению работы ко времени выполнения:
Единица измерения мощности – Ватт. 1 Вт = 1 Дж/с.
Числовое значение мощности показывает работу, совершенную за единицу времени. Мощность тем больше, чем большая работа совершается за единицу времени. Мощность тем больше, чем меньше времени затрачено на совершение работы.
Чтобы найти работу, нужно мощность умножить на время, в течение которого она была выполнена.