Наименьшее время работы с максимальной мощностью у пути ресинтеза атф

Дано определение ресинтеза АТФ. Описаны основные пути ресинтеза АТФ в мышечных волокнах: креатинфосфатный, гликолитический, миокиназный и тканевое дыхание. Описаны количественные критерии путей ресинтеза АТФ, соотношение между различными путями ресинтеза АТФ при мышечной работе, а также между путями ресинтеза АТФ и зонами относительной мощности.

Ресинтез АТФ

Ресинтез АТФ в мышечных волокнах

Определение

Ресинтез АТФ – синтез АТФ из различных энергетических субстратов во время физической работы в мышечных волокнах.

Формула ресинтеза АТФ выглядит следующим образом:

АДФ+фосфат+энергия → АТФ.

Пути ресинтеза АТФ

Ресинтез АТФ может осуществляться двумя путями:

  • с участием кислорода (аэробный путь).
  • без участия кислорода (анаэробный путь);

Аэробный путь (тканевое дыхание, аэробное или окислительное фосфорилирование) – основной способ образования АТФ в мышечных волокнах. Он протекает в митохондриях мышечных волокон. В результате тканевого дыхания выделяется 39 молекул АТФ. Окисляемое вещество распадается до углекислого газа и воды.

Анаэробный ресинтез АТФ

Анаэробные пути ресинтеза АТФ являются дополнительными способами образования АТФ в мышечных волокнах в тех случаях, когда основной путь получения АТФ – тканевое дыхание не может обеспечить мышечную деятельность необходимым количество кислорода. Эти механизмы ресинтеза АТФ активно функционируют в начале выполнения физических упражнений, когда тканевое дыхание не полностью «развернулось», а также при физических нагрузках высокой мощности.

Анаэробный ресинтез АТФ в мышечных волокнах возможен посредством нескольких механизмов:

  • Креатинфосфатный ресинтез АТФ – ресинтез АТФ из креатинфосфата;
  • Гликолитический ресинтез АТФ – ресинтез АТФ из гликогена мышц;
  • Миокиназный (аденилаткиназный) ресинтез АТФ – ресинтез АТФ из АДФ при значительном накоплении в мышечных волокнах АДФ. Рассматривается как аварийный механизм, обеспечивающий ресинтез АТФ, когда другие пути ресинтеза АТФ невозможны.

Количественные критерии путей ресинтеза АТФ

Существуют количественные критерии путей ресинтеза АТФ. К ним можно отнести: максимальную мощность, время развертывания, время сохранения или поддержания максимальной мощности, метаболическую ёмкость (табл. 1).

  • Максимальная мощность – максимальное количество АТФ, которое может образоваться в единицу времени при функционировании данного пути ресинтеза АТФ.
  • Время развертывания – минимальная длительность, необходимая для выхода ресинтеза АТФ на свою максимальную мощность.
  • Время сохранения или поддержания максимальной скорости – длительность функционирования данного пути ресинтеза АТФ с максимальной мощностью.
  • Метаболическая ёмкость – количество АТФ, которое может образоваться во время мышечной работы за счёт данного пути ресинтеза АТФ.

Таблица 1. Количественные критерии основных путей ресинтеза АТФ (С.С. Михайлов, 2009)

Пути ресинтеза АТФ Максимальная мощность, кал/мин кг Время развертывания Время сохранения максимальной мощности Метаболическая ёмкость
Креатинфосфатный 900-1100 1-2 с 8-10 с
Гликолитический 750-850 20-30 с 2-3 мин. При анаэробном окислении гликогена образуются 3 молекулы АТФ в расчете на одну молекулу глюкозы
Аэробный 350-450 3-4 мин. Десятки минут При аэробном окислении гликогена образуются 39 молекул АТФ в расчете на одну молекулу глюкозы (самый экономичный)

Соотношение между различными путями ресинтеза АТФ

При любой мышечной работе функционируют все три основных механизма ресинтеза АТФ, но включаются они последовательно. В первые секунды ресинтез АТФ осуществляется за счет креатинфосфатной реакции, затем включается гликолиз. По мере продолжения работы на смену гликолизу приходит тканевое дыхание (рис.1). Эта смена механизмов ресинтеза АТФ приводит к уменьшению суммарной выработки АТФ.

Включение путей ресинтеза АТФ при выполнении физической работы

Рис.1.  Включение путей ресинтеза АТФ при выполнении физической работы (С.С. Михайлов, 2009)

Пути ресинтеза АТФ и зоны относительной мощности

В.С. Фарфель приводит следующее соотношение мощности работы и основной системы энергообеспечения (табл.2)

Таблица 2. Зоны мощности работы и основная система энергообеспечения (В.С. Фарфель)

Мощность работы Основная система энергообеспечения Типичное время работы
Максимальная Креатинфосфатная реакция до 20 с
Субмаксимальная Гликолиз до 5 мин.
Большая Гликолиз+ тканевое дыхание до 30 мин.
Умеренная Тканевое дыхание Более 30 мин.

J.T. Cramer (2008) приводит несколько иное соотношение зон мощности и основных систем энергообеспечения (табл.3)

Таблица 3. — Зоны относительной мощности и основная ситема энергообеспечения (J.T. Cramer, 2008)

% от максимальной мощности работы Основная система энергообеспечения Время работы
90-100 Креатинфосфатная реакция 5-10 с
75-90 Гликолиз 15-30 с
30-75 Гликолиз+ тканевое дыхание 1-3 мин.
20-30 Тканевое дыхание Более 3 мин.

Видео про гидролиз и ресинтез АТФ

Литература

  1. Михайлов С.С. Спортивная биохимия. – М.: Советский спорт, 2009.– 348 с.
  2. Волков Н.И., Несен Э.Н., Осипенко А.А., Корсун С.Н. Биохимия мышечной деятельности.- Киев: Олимпийская литература, 2000.- 504 с.

С уважением, А.В.Самсонова

Похожие записи:


Сила тяжести

Дано определение силы тяжести. Показано, что сила тяжести является частным случаем силы гравитации. Описаны факторы, определяющие силу тяжести:…


Сила

Дано определение силы в механике. Описаны факторы, определяющие действие на тело силы: направление, точка приложения и численное значение.


Звенья тела человека как рычаги

Дано описание опорно-двигательного аппарата (ОДА) человека как системы рычагов. Приведен пример расчета силы двуглавой мышцы плеча…


Метаболический стресс. Накопление лактата в мышцах

Описан механизм влияния метаболического стресса (накопления лактата) на гипертрофию мышечных волокон. Показано, что накопление лактата приводит к…


Механическое повреждение мышечных волокон

Описаны механизмы механического повреждения мышечных волокон при силовой тренировке, приводящие к гипертрофии скелетных мышц. Показано, что…


Механическое напряжение (механотрансдукция) в скелетных мышцах

Описаны процессы передачи механического напряжения в скелетных мышцах. Показано, что механическое напряжение, возникающее вследствие сокращения скелетных…

Тема: ЭНЕРГЕТИЧЕСКОЕ
ОБЕСПЕЧЕНИЕ
МЫШЕЧНОЙ
ДЕЯТЕЛЬНОСТИ

Вопросы:

1. Количественные
критерии путей ресинтеза АТФ.

2. Аэробный путь
ресинтеза АТФ.

3. Анаэробные
пути ресинтеза АТФ.

4. Соотношения
между различными путями ресинтеза АТФ
при мышечной работе. Зоны относительной
мощности мышечной работы.

Тема:
БИОХИМИЧЕСКИЕ
ИЗМЕНЕНИЯ В ОР­ГАНИЗМЕ ПРИ РАБОТЕ
РАЗЛИЧНОГО ХА­
РАКТЕРА

Вопросы:

1. Основные
механизмы нервно-гуморальной регуляции
мышечной деятельности.

2. Биохимические
изменения в скелетных мышцах.

3. Биохимические
сдвиги в головном мозге и миокарде.

4. Биохимические
изменения в печени.

5. Биохимические
сдвиги в крови.

6. Биохимические
сдвиги в моче.

1. Количественные
критерии путей ресинтеза АТФ.

Сокращение и
расслабление мышцы нуждаются в энергии,
которая образуется при гидролизе
молекул АТФ.

Однако запасы АТФ
в мышце незначительны, их достаточно
для работы мышцы в течении 2 секунд.
Образование АТФ в мышцах называется
ресинтезом
АТФ.

Таким образом, в
мышцах идет два параллельных процесса
– гидролиз АТФ и ресинтез АТФ.

Ресинтез
АТФ в
отличие от гидролиза может протекать
разными путями, а всего, в зависимости
от источника энергии их выделяют три:
аэробный (основной), креатинфосфатный
и лактатный.

Для количественной
характеристики различных путей ресинтеза
АТФ обычно
используют несколько критериев.

1. Максимальная
мощность или максимальная скорость –
это наибольшее
количество АТФ, которое может образоваться
в единицу времени за счет данного пути
ресинтеза. Измеряется максимальная
мощность в калориях или джоулях, исходя
из того что один ммоль АТФ соответствует
физиологическим условиям примерно 12
кал или 50 Дж. Поэтому данный критерий
имеет размерность кал/мин-кг мышечной
ткани или Дж/мин-кг мышечной ткани.

2.
Время
развертывания

– это минимальное время, необходимое
для выхода ресинтеза АТФ на свою
наибольшую скорость, то есть для
достижения максимальной мощности. Этот
критерий измеряется в единицах времени.

3. Время сохранения
или поддержания максимальной мощности
это
наибольшее время функционирования
данного пути ресинтеза АТФ с максимальной
мощностью.

4. Метаболическая
ёмкость –
это
общее количество АТФ, которое может
образоваться во время мышечной работы
за счет данного пути ресинтеза АТФ.

В зависимости от
потребления кислорода пути
ресинтеза
делятся на аэробные
и анаэробные.

2. Аэробный путь ресинтеза атф

Аэробный
путь ресинтеза АТФ
иначе
называется
тканевым дыханием –
это
основной способ образования АТФ,
протекающий в митохондриях мышечных
клеток. В ходе тканевого дыхания от
окисляемого вещества отнимаются два
атома водорода и по дыхательной цепи
передаются на молекулярный кислород,
доставляемый в мышцы кровью, в результате
чего возникает вода. За счет энергии,
выделяющейся при образовании воды,
происходит синтез молекул АТФ из АДФ и
фосфорной кислоты. Обычно на каждую
образовавшуюся молекулу воды приходится
синтез трех молекул АТФ.

Чаще всего водород
отнимается от промежуточных продуктов
цикла трикарбоновых кислот (ЦТК). ЦТК –
это завершающий этап катаболизма в ходе
которого происходит окисление
ацетилкофермента А до углекислого газа
и воды. В ходе этого процесса от
перечисленных выше кислот отнимается
четыре пары атомов водорода и поэтому
образуется 12 молекул АТФ при окислении
одной молекулы ацетилкофермента А.

В свою очередь
ацетилкофермент А может образовываться
из углеводов, жиров аминокислот, то есть
через это соединение в ЦТК вовлекаются
углеводы, жиры и аминокислоты.

Скорость аэробного
обмена АТФ контролируется содержанием
в мышечных клетках AДФ,
который является активатором ферментов
тканевого дыхания. При мышечной работе
происходит накопление AДФ.
Избыток AДФ
ускоряет тканевое дыхание, и оно может
достигнуть максимальной интенсивности.

Другим активатором
ресинтеза АТФ является углекислый газ.
Избыток этого газа в крови активирует
дыхательный центр головного мозга, что
в итоге приводит к повышению скорости
кровообращения и улучшению снабжения
мышцы кислородом.

Максимальная
мощность
аэробного
пути составляет 350-450 кал/мин-кг. По
сравнению с анаэробными путями ресинтеза
АТФ тканевое дыхание облает более
низкими показателями, что ограничено
скоростью доставки кислорода в мышцы.
Поэтому за счет аэробной пути ресинтеза
АТФ могут осуществляться только
физические нагрузки умеренной мощности.

Время развертывания
составляет
3 – 4 минуты, но у хорошо тренированных
спортсменов может составлять 1 мин. Это
связано с тем, что на доставку кислорода
в митохондрии требуется перестройка
практически всех систем организма.

Время работы с
максимальной мощностью
составляет
десятки минут. Это дает возможность
использовать данный путь при длительной
работе мышц.

По сравнению с
другими идущими в мышечных клетках
процессами ресинтеза АТФ аэробный путь
имеет ряд преимуществ.

1. Экономичность:
из одной молекулы гликогена образуется
39 молекул АТФ, при анаэробном гликолизе
только 3 молекулы.

2. Универсальность
в качестве начальных субстратов здесь
выступают разнообразные вещества:
углеводы, жирные кислоты, кетоновые
тела, аминокислоты.

3. Очень большая
продолжительность работы. В покое
скорость аэробного ресинтеза АТФ может
быть небольшой, но при физических
нагрузках она может стать максимальной.

Однако есть и
недостатки.

1. Обязательное
потребление кислорода, что ограничено
скоростью доставки кислорода в мышцы
и скоростью проникновения кислорода
через мембрану митохондрий.

2. Большое время
развертывания.

3. Небольшую по
максимальной величине мощность.

Поэтому мышечная
деятельность, свойственная большинству
видов спорта, не может быть полностью
получена этим путем ресинтеза АТФ.

В
спортивной практике для оценки аэробного
ресинтеза используются следующие
показатели:
максимальное
потребление кислорода (МПК), порог
аэробного обмена (ПАО), порог анаэробного
обмена (ПАНО) и кислородный приход.

МПК – это
максимально возможная скорость
потребления кислорода организмом при
выполнение физической работы. Чем выше
МПК, тем выше скорость тканевого дыхания.
Чем тренированнее человек, тем выше
МПК. МПК рассчитывают обычно на 1кг массы
тела. У людей, не занимающихся спортом
МПК 50 мл/мин-кг, а у тренированных людей
он достигает 90 мл/мин-кг.

В спортивной
практике МПК также используется для
характеристики относительной мощности
аэробной работы, которая выражается в
процентах от МПК. Например, относительная
мощность работы, выполняемая с потреблением
кислорода 3 л/мин спортсменом, имеющим
МПК 6 л/мин, будет составлять 50% от уровня
МПК.

ПАО
это наибольшая относительная мощность
работы, измеряемая по потреблению
кислорода в процентах по отношению к
МПК. Большие величины ПАО говорят о
лучшем развитии аэробного ресинтеза.

ПАНО – это
минимальная относительная мощность
работы, также измеренная по потреблению
кислорода в процентах по отношению к
МПК. Высокое ПАНО говорит о том, что
аэробный ресинтез выше в единицу времени,
поэтому гликолиз включается при гораздо
больших нагрузках.

Кислородный
приход –
это
количество кислорода (сверх дорабочего
уровня), использованное во время
выполнения данной нагрузки для обеспечения
аэробного ресинтеза АТФ. Кислородный
приход характеризует вклад тканевого
дыхания в энергообеспечение всей
проделанной работы. Кислородный приход
часто используют для оценки всей
проделанной аэробной работы.

Под влиянием
систематических тренировок в мышечных
клетках возрастает количество митохондрий,
совершенствуется кислородно-транспортная
функция организма, возрастет количество
миоглобина в мышцах и гемоглобина в
крови.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Время развертывания — 3-4 мин. Такое большое время развертывания объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц.

Время работы с максимальной мощностью составляет десятки минут. Как уже указывалось, источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Кребса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры, кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью в течение такого продолжительного времени.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью: в ходе этого процесса идет глубокий распад окисляемых веществ до конечных продуктов — С02 и Н20 и поэтому выделяется большое количество энергии. Так, например, при аэробном окислении мышечного гликогена образуется 39 молекул АТФ в расчете на каждую отщепляемую от гликогена молекулу глюкозы, в то время как при анаэробном распаде этого углевода синтезируется только 3 молекулы АТФ в расчете на одну молекулу глюкозы. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза АТФ окисляются все основные органические вещества организма: аминокислоты, углеводы, жирные кислоты, кетоновые тела и др. Еще одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы: практически он функционирует постоянно в течение всей жизни. В покое скорость аэробного ресинтеза АТФ низкая, при физических нагрузках его мощность может стать максимальной.

Однако аэробный способ образования АТФ имеет и ряд недостатков. Так, действие этого способа связано с обязательным потреблением кислорода, доставка которого в мышцы обеспечивается дыхательной и сердечнососудистой системами. Функциональное состояние кардиореспираторной системы является лимитирующим фактором, ограничивающим продолжительность работы аэробного пути ресинтеза АТф с максимальной мощностью и величину самой максимальной мощности.

Возможности аэробного пути ограничены еще и тем, что все ферменты тканевого дыхания встроены во внутреннюю мембрану митохондрий в форме дыхательных ансамблей и функционируют только ffPH наличии неповрежденной мембраны. Любые факторы, влияющие На состояние и свойства мембран, нарушают образование АТФ аэробным способом. Например, нарушения окислительного фосфорилирования наблюдаются при ацидозе, набухании митохондрий, при развитии в мышечных клетках процессов свободно-радикального окисления липидов, входящих в состав мембран митохондрий.

Еще одним недостатком аэробного образования АТФ можно считать большое время развертывания и небольшую по абсолютной величине максимальную мощность. Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью обеспечена этим путем ресинтеза АТФ и мышцы вынуждены дополнительно включать анаэробные способы образования АТФ, имеющие более короткое время развертывания и большую максимальную мощность.

Энергетические запасы

Таблица 1.1 Порядок подключения энергетических систем при физической нагрузке максимальной мощности. Анаэробный — без участия кислорода; аэробный — с участием кислорода. Алактатный — молочная кислота не вырабатывается; лактатный — молочная кислота вырабатывается.

Продолжительность нагрузки

Механизмы энергообеспечения

Источники энергии

Примечания

1-5 секунд

Анаэробный алактатный (фосфатный)

АТФ

6-8 секунд

Анаэробный алактатный (фосфатный)

АТФ + КрФ

9-45 секунд

Анаэробный алактатный (фосфатный) + анаэробный лактатный (лактатный)

АТФ, КрФ + гликоген

Большая выработка лактата

45-120 секунд

Анаэробный лактатный (лактатный)

Гликоген

По мере увеличения продолжительности нагрузки выработка лактата снижается

2-4 минуты

Аэробный (кислородный) + анаэробный лактатный (лактатный)

Гликоген

4-10 минут

Аэробный

Гликоген + жирные кислоты

Чем выше доля жирных кислот в энергообеспечении, тем дольше продолжительность нагрузки

У спортсменов на выносливость показатель жира в среднем 10%. Это важный показатель физического состояния спортсмена. У каждого спортсмена существует свой идеальный процент жира.  Идеальный процент жира находиться в диапазоне от максимально низкого (4-5%) до относительно высокого (12-13%).

Запаса углеводов хватает в среднем на 95 минут марафонского бега, жировых запасов хватит на 119 часа. Но чтобы получить энергию из жира требуется больше кислорода. Из углеводов можно синтезировано больше АТФ в единицу времени. Поэтому углеводы — это главный источник энергии во время интенсивных нагрузок. Когда заканчиваются запасы углеводов, вклад жира в энергообеспечение работы возрастает, а интенсивность нагрузки снижается. В марафоне это происходит в районе 30-километровой отметки — после 90 минут бега.

Фосфатная система ресинтеза АТФ

Быстрый ресинтез АТФ в мышцах идет за счет креатинфосфата (КрФ). Запаса КрФ в мышцах хватает на 6-8 секунд интенсивной работы.

При максимальной нагрузке фосфатная система истощается в течение 10 секунд. В первые 2 секунды расходуется АТФ, а затем 6-8 секунд — КрФ. Через 30 секунд после физической нагрузки запасы АТФ и КрФ восстанавливаются на 70%, а через 3-5 минут — полностью.

Фосфатная система важна для взрывных и кратковременных видов физической активности — спринтеры, футболисты, прыгуны в высоту и длину, метатели диска, боксеры и теннисисты.

Для тренировки фосфатной системы непродолжительные энергичные упражнения чередуют с отрезками отдыха. Отдых должен быть достаточно длительным, чтобы успел произойти ресинтез АТФ и КрФ (график 1).

Через 8 недель спринтерских тренировок количество ферментов, которые отвечают за распад и ресинтез АТФ, увеличится. После 7 месяцев тренировок на выносливость в виде бега три раза в неделю запасы АТФ и КрФ вырастут на 25-50%. Это повышает способность спортсмена показать результат в видах деятельности, которые длятся не более 10 секунд.

Ресинтез

Ресинтез АТФ из АДФ не может происходить самопроизвольно, этот процесс сопряжен с рядом дающих энергию превращений ( стр.

Ресинтез АТФ из АДФ не может происходить самопроизвольно. Напомним здесь, что при отщеплении терминальной фосфатной группировки от АТФ при физиологических концентрациях всех веществ освобождается около 8000 кал / иол.

Ресинтез молекул АТФ идет за счет энергии окисления определенных Сахаров. Во время этого процесса поперечные мостики попеременно разрушаются и восстанавливаются, причем механизм этого явления понят не до конца.

Этот ресинтез глюкозы из других источников удовлетворяет потребности в энергии и имеет существенное значение для жизнедеятельности некоторых типов клеток, особенно клеток крови и нервной ткани у животных. Аналогичным образом обстоит дело у микроорганизмов; из углеродных источников, содержащих четыре и три углеродных атома, у них синтезируются гексозы, пентозы и структурные полисахариды. Итак, вопрос сводится по существу к тому, каким образом осуществляется биосинтез; глюкозы или гексозофосфата из пирувата.

Для ресинтеза липоидов в кишечной стенке, помимо высших жирных кислот и глицерина, необходимы еще фосфорная кислота, а также органические азотистые основания — холин или кол амин. Эти соединения частично поступают при всасывании из полости кишечника, поскольку они образуются при гидролизе пищевых липоидов, частично же доставляются в эпителиальные клетки кишечника с током крови из других тканей.

Для ресинтеза липоидов в кишечной стенке, помимо высших жирных кислот и глицерина, необходимы еще фосфорная кислота, а также органические азотистые основания — холин или коламин. Эти соединения частично поступают при всасывании из полости кишечника, поскольку они образуются при гидролизе пищевых липоидов, частично же доставляются в эпителиальные клетки кишечника с током крови из других тканей.

Прежде всего ресинтез АТФ обеспечивается трансфосфорилированием АДФ с креатинфосфатом.

Благодаря возможности ресинтеза глутатиона, требующего затраты энергии АТФ, цикл может повторяться многократно, транспортируя значительные количества аминокислот.

Таким образом, ресинтез АТФ сопряжен с рядом дающих энергию превращений ( стр.

Гидролитическое расщепление и ресинтез пероксидной связи в процессах синтеза и гидролиза пероксиэфиров невозможны. В связи с этим исследуемую реакцию следует рассматривать как частный случай О-аци-лирования, в процессе которого от карбоксильной группы отщепляется гидроксйл, а от гидропероксидной — водород.

Процессы синтеза и ресинтеза белка и нуклеиновых кислот более энергично протекают в клетках опухоли за счет распадающихся, богатых энергией фосфорорганических соединений, образование которых сопряжено с процессом окислительного фосфорилирования в тканях.

Однако после каждого повторного ресинтеза наблюдается небольшое увеличение вязкости по сравнению с предыдущим опытом. Это, возможно, обусловлено действием давления на ферменты.

Поэтому при определении ресинтеза крахмала через 7 — 10 суток теплого хранения всегда наблюдается уменьшение количества са-харов и прирост крахмала. При определении же в более ранние сроки не всегда удается установить изменения в соотношении крахмала и Сахаров.

Доказана также возможность ресинтеза АТФ в широких размерах за счет окисления и веществ неуглеводного характера. Мы знаем теперь, что окислительное фосфорилирование легко осуществляется в процессе окисления различных веществ в цикле трикарбоновых кислот Кребса ( см. стр.

Доказана также возможность ресинтеза АТФ в широких размерах за счет окисления углеводов в пентозном цикле ( стр.

Аэробный путь ресинтеза АТФСтраница 1

Биология » Уровень инсулина, глюкозы и лактаты в крови » Аэробный путь ресинтеза АТФ

Аэробный путь ресинтеза АТФ (тканевое дыхание) – основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород, доставляемый кровью в мышцы из воздуха, в результате чего возникает вода. За счёт энергии, выделяющейся при образовании воды, происходит синтез АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трёх молекул АТФ .

Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментов тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью . При мышечной работе за счёт интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором аэробного пути ресинтеза АТФ является углекислый газ. Возникая при физической работе в избытке, он активирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышц кислородом .

Аэробный путь образования АТФ характеризуется следующими критериями. Максимальная мощность составляет 350 – 450 кал/мин×кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание обладает самой низкой величиной максимальной мощности. Это обусловлено тем, что возможности аэробного процесса ограничены доставкой кислорода в митохондрии и их количеством в мышечных клетках. Поэтому за счёт аэробного пути ресинтеза АТФ возможно выполнение физических нагрузок только умеренной мощности.

Время развёртывания – 3 – 4 мин (у хорошо тренированных спортсменов может быть около 1 мин). Такое большое время развёртывания объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц.

Время работы с максимальной мощностью составляет десятки минут. Источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Кребса. Причём для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры, кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью в течение такого продолжительного времени .

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью: в ходе этого процесса идёт глубокий распад окисляемых веществ до конечных продуктов – углекислого газа и воды, поэтому выделяется большое количество энергии. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза окисляются все основные органические вещества организма: белки, углеводы, жирные кислоты и др. Ещё одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы: практически он функционирует постоянно в течение всей жизни.

Страницы: 1 

Рекомендуем к прочтению:

Зачем нейрону дендриты, а дендритам шипики

Многие нервные клетки похожи на кусты или деревья: их выходной отросток, аксон, — тонкий корешок этого дерева, все остальные многочисленные отростки — дендриты. Дендриты обычно отходят от тела клетки в виде толстых стволов, которые затем …

Принцип глобального эволюционизма

1) С точки зрения ламаркизма, длина шеи и ноги жирафа – результат того, что многие поколения его некогда коротконогих и короткошеих предков питались листьями деревьев, за которыми им приходилось тянуться все выше и выше. Незначительное уд …

Норы, жилища и убежище

Убежища устраивает лишь на время рождения и воспитания молодняка. Болыпей частью это норы, вырытые барсуком или ли-сицей и распшренные волками. Период спаривания в основном приходится на февраль. Число детенышей в выводке варьирует от 2 д …

АТФ в мышцах

Аденозин трифосфат (АТФ, он же аденин) – молекула, служащая энергетической основой всех биологических процессов человеческого организма. АТФ в мышцах используется для осуществления движений. Мышечное волокно сокращается под действием расщепления аденина, после этого высвобождается определенное количество энергии, которое идёт на сокращение мышц. В человеческом организме аденозин трифосфат получается из инозина (торговая марка: рибоксин, инозин, рибонозин ит.д.).

Если при сокращении мышц АТФ расщепляется, то в моменты отдыха, наоборот – синтезируется. По большому счёту, АТФ в мышцах представляет из себя ни что иное, как биологическую батарею, которая запасает энергию, когда в ней нет необходимости. С другой стороны, освобождая её, если возникает потребность в энергии.

!    Роль атф в энергетическом обмене очень велика. Без атф человеческий организм не смог бы осуществлять процесс жизнедеятельности.

Роль атф в энергетическом обмене очень велика. Без атф человеческий организм не смог бы осуществлять процесс жизнедеятельности.Человек нуждается в энергетическом снабжении метаболизма, транспортировке различных молекул ит.д. Сокращение мышц не возможно без энергии, получаемой благодаря АТФ.

Ресинтез липидов в энтероцитах

Ресинтез липидов – это синтез липидов в стенке кишечника из поступающих сюда экзогенных жиров, иногда могут использоваться и эндогенные жирные кислоты. Основная задача этого процесса – связать поступившие с пищей средне- и длинноцепочечные жирные кислоты со спиртом – глицеролом или холестеролом. Это ликвидирует их детергентное действие на мембраны и позволяет переносить по крови в ткани.

Активация жирной кислоты

Поступившая в энтероцит (как и в любую другую клетку) жирная кислота обязательно активируется через присоединение коэнзима А. Образовавшийся ацил-SКоА участвует в реакциях синтеза эфиров холестерола, триацилглицеролов и фосфолипидов.

Реакция активации жирной кислоты

Ресинтез эфиров холестерола

Холестерол этерифицируется с использованием ацил-SКоА и фермента ацил-SКоА:холестерол-ацилтрансферазы (АХАТ).

Реэтерификация холестерола напрямую влияет на его всасывание в кровь. В настоящее время ищутся возможности подавления этой реакции для снижения концентрации ХС в крови.

Реакция ресинтеза холестерола

Ресинтез триацилглицеролов

Для ресинтеза ТАГ есть два пути:

Первый путь, основной – 2-моноацилглицеридный – происходит при участии экзогенных 2-МАГ и ЖК в гладком эндоплазматическом ретикулуме энтероцитов: мультиферментный комплекс триацилглицерол-синтазы формирует ТАГ.

Моноацилглицеридный путь образования ТАГ

Поскольку 1/4 часть ТАГ в кишечнике полностью гидролизуется, а глицерол в энтероцитах не задерживается и быстро переходит в кровь, то возникает относительный избыток жирных кислот для которых не хватает глицерола. Поэтому существует второй, глицеролфосфатный, путь в шероховатом эндоплазматическом ретикулуме. Источником глицерол-3-фосфата служит окисление глюкозы. Здесь можно выделить следующие реакции:

  1. Образование глицерол-3-фосфата из глюкозы.
  2. Превращение глицерол-3-фосфата в фосфатидную кислоту.
  3. Превращение фосфатидной кислоты в 1,2-ДАГ.
  4. Синтез ТАГ.

Глицеролфосфатный путь образования ТАГ

Ресинтез фосфолипидов

Фосфолипиды синтезируются также, как и в остальных клетках организма (см «»). Для этого есть два способа:

Первый путь – с использованием 1,2-ДАГ и активных форм холина и этаноламина для синтеза фосфатидилхолина или фосфатидилэтаноламина.

Ресинтез фосфолипидов из ДАГ на примере фосфатидилхолина

Второй путь – на основе синтезируемой in situ фосфатидной кислоты.

Схема ресинтеза фосфолипидов из фосфатидной кислоты

После ресинтеза фосфолипиды, триацилглицеролы, холестерол и его эфиры упаковываются в особые транспортные формы липидов – липопротеины и только в такой форме они способны покинуть энтероцит и транспортироваться в крови. В кишечнике формируются два вида липопротеинов – хиломикроны и липопротеины высокой плотности (ЛПВП), другие типы липопротеинов здесь не образуются.

Список источников

  • biokhimija.ru
  • rabbitprom.ru
  • www.biologyguide.ru
  • www.ngpedia.ru
  • toplifter.ru
  • diagnoster.ru

6.1.6 Уменьшение времени развёртывания механизма аэробного ресинтеза АТФ.

Время развёртывания это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, т.е. для достижения максимальной мощности. Время развёртывания аэробного ресинтеза АТФ составляет 3-4 минуты (у хорошо тренированных спортсменов может быть около 1 минуты). Такое большое время развёртывания объясняется тем, что для обеспечения максимальной скорости тканевого дыхания необходима перестройка всех систем организма, участвующих в доставке кислорода в митохондрии мышц[11].

На рисунке 6.2 приведены обобщённые литературные сведения об использовании кислорода в каскаде окислительного метаболизма и факторах, определяющих эффективность каждой из его ступеней [8].

Рисунок 6.2

Схема кислородного каскада в организме (по Верхошанскому Ю.В.,1988)

В результате газообмена в легких молекулы кислорода попадают в кровь, где в составе химического соединения с гемоглобином переносятся током крови к работающим мышцам. Затем кислород через стенки капилляров проникает внутрь мышечной клетки, пересекает внутриклеточное пространство (самостоятельно или с помощью мышечного белка миоглобина) и мембрану митохондрий, где и используется в химических реакциях окисления.

Понятно, что для статически работающих мышц-сгибателей пальцев проблема состоит как в доставке кислорода к работающим мышцам, так и в его использовании для ресинтеза АТФ в митохондриях.

Дыхательный аппарат обеспечивает снабжение организма кислородом и удаление из него углекислого газа. При подтягивании на перекладине к системе внешнего дыхания не предъявляется повышенных требований, как это происходит, например, в лыжных гонках. Когда спортсмен находится в хорошей форме, подтягивание в соревновательном темпе даже на четвёртой минуте выполняется с умеренными значениями частоты и глубины дыхания, за исключением, пожалуй, последних секунд выполнения упражнения, когда спортсмен предпринимает финишное ускорение. Организм получает из воздуха достаточное количество кислорода (кроме начального отрезка времени), но он не может своевременно доставить его по назначению и использовать с максимальной эффективностью.

В начале выполнении подтягиваний в работающих мышцах (в том числе и в мышцах-сгибателей пальцев) резко возрастает кислородный запрос по отношению к уровню покоя. Пока дыхание и кровообращение не успевают обеспечить адекватное снабжение работающих мышц кислородом, вероятно, используется резервный кислород, связанный с находящимся в мышечных клетках миоглобином. Для эффективной работы аэробного механизма энергообеспечения необходимо, чтобы все имеющиеся в распоряжении работающей мышцы капилляры находились в открытом состоянии, а объём кровотока через капиллярную сеть был максимально возможным. В противном случае после исчерпания миоглобинового резерва кислорода ресинтез АТФ длительное время (по меркам подтягивания) будет происходить за счёт гликолиза. Создание максимально возможного кровотока через работающие мышцы в кратчайшие сроки позволит сократить время развёртывания механизма аэробного окисления.

Поскольку лыжные гонки (наряду с подтягиванием и стрельбой входящие в состав зимнего полиатлона) оказывают существенное развивающее воздействие на возможности кислородотранспортной системы, скорее всего, нет необходимости в том, чтобы на тренировках по подтягиванию специально заниматься развитием возможностей системы внешнего дыхания, сердечно-сосудистой и кровеносной систем (за исключением развития капиллярной сети).

Существенное влияние на скорость развёртывания аэробного ресинтеза АТФ оказывают внутриклеточные факторы (рисунок 6.2).

Установка на автомашину более мощного двигателя даёт возможность во-первых, увеличить её максимальную скорость и, во-вторых, разогнаться до заданной скорости за меньшее время. Митохондрии – это по сути «энергетические установки» аэробного механизма ресинтеза АТФ. При увеличении количества и площади митохондрий происходит не только увеличение максимальной мощности аэробного ресинтеза АТФ, но и достижение заданного уровня мощности за меньшее время, т.е. уменьшение времени развёртывания.

С началом работы в мышцах происходит уменьшение концентрации АТФ и увеличение концентрации АДФ, что является сигналом к запуску как гликолиза, так и аэробного ресинтеза АТФ. При увеличении количества и размера митохондрий увеличивается и концентрация ферментов аэробного окисления (локализованных на их внутренних мембранах), что,вероятно, уменьшает время развёртывания механизма аэробного окисления и повышает шансы спортсмена на длительное поддержание надёжного хвата.

Миоглобин, находящийся в мышечных клетках, во-первых, в начале подтягиваний некоторое время поддерживает снабжение митохондрий кислородом и, во-вторых, облегчает и ускоряет транспорт кислорода к митохондриям, расположенным в глубине мышечного волокна. Это происходит за счёт так называемого «челночного» механизма передачи молекул кислорода от крови до митохондрий [9]. При более высоком содержании миоглобина (а значит и кислорода) в мышечных клетках гликолиз в начальный период работы будет протекать менее бурно.

Читайте также

Теория самореализации времени

Теория самореализации времени
Шри Шайлендра Шарма проживает более десяти лет практически безвыездно в селе Говардхан, неподалеку от Матхуры. Сначала он хотел поселиться в Сарнатхе близ Варанаси, где жили учителя его линии, но в ходе паломничества по святым местам Индии,

ПРИЛОЖЕНИЕ III СХЕМА ЦИКЛИЧЕСКОГО РАЗВЕРТЫВАНИЯ МИРА В АРХАИЧЕСКОМ ПРЕДСТАВЛЕНИИ КИТАЙЦЕВ

ПРИЛОЖЕНИЕ III
СХЕМА ЦИКЛИЧЕСКОГО РАЗВЕРТЫВАНИЯ МИРА В АРХАИЧЕСКОМ ПРЕДСТАВЛЕНИИ

2.3 БИОЭНЕРГЕТИКА ПОДТЯГИВАНИЙ. 2.3.1 Пути ресинтеза АТФ

2.3 БИОЭНЕРГЕТИКА ПОДТЯГИВАНИЙ.

2.3.1 Пути ресинтеза АТФ
Для выполнения как динамической так и статической работы требуется энергия. Непосредственным источником энергии для мышечных сокращений является расщепление высокоэнергетического вещества аденозинтрифосфата

2.3.1.1 Креатинфосфатный механизм ресинтеза АТФ.

2.3.1.1 Креатинфосфатный механизм ресинтеза АТФ.
В мышечных клетках всегда имеется креатинфосфат – соединение, обладающее большим запасом энергии и легко отдающее её при взаимодействии с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате

2.3.1.2 Гликолитическии механизм ресинтеза АТФ.

2.3.1.2 Гликолитическии механизм ресинтеза АТФ.
Обеспечивает ресинтез АТФ за счет анаэробного (бескислородного) расщепления глюкозы и гликогена (гликолиз и гликогенолиз) с образованием молочной кислоты (лактата). Данный механизм работает в тех случаях, когда

2.2.1.3 Аэробный механизм ресинтеза АТФ.

2.2.1.3 Аэробный механизм ресинтеза АТФ.
Аэробное окисление является важнейшим источником энергии в организме. Кислородная система ресинтеза АТФ действует при непрерывном поступлении кислорода в структуры мышечных клеток, называемые митохондриями. Для энергетического

6.1.1 Увеличение ёмкости креатинфосфатного механизма.

6.1.1 Увеличение ёмкости креатинфосфатного механизма.
Время поддержания максимальной мощности ресинтеза АТФ за счёт креатинфосфатной реакции составляет всего 8-10 секунд. Через 30 секунд она падает вдвое, а к концу 3 минуты интенсивной работы креатинкиназная реакция в

6.1.3 Источники энергии для аэробного ресинтеза АТФ.

6.1.3 Источники энергии для аэробного ресинтеза АТФ.
Длительность поддержания аэробной работы заданного уровня мощности зависит от запасов в организме доступных источников энергии – энергетических субстратов, т.е. тех веществ, которые могут подвергаться окислению

6.1.5 Развитие возможностей механизма аэробного окисления в работающих мышцах. 6.1.5.1 Увеличение числа мышечных волокон, способных к аэробному ресинтезу АТФ.

6.1.5 Развитие возможностей механизма аэробного окисления в работающих мышцах.
6.1.5.1 Увеличение числа мышечных волокон, способных к аэробному ресинтезу АТФ.
Для того чтобы сделать уборку в своей квартире, нужно сначала обзавестись квартирой. Для того чтобы в мышечных

Глава 33 РАСХОДОВАНИЕ ВРЕМЕНИ

Глава 33
РАСХОДОВАНИЕ ВРЕМЕНИ
Время, которое вы имеете на обдумывание своих ходов, обычно очень ограничено. Учитесь использовать его рационально.Принцип 156: Держитесь подальше от ситуаций с дефицитом времени, только если они не есть ваш хлеб с маслом.Добиваться этого

Во власти времени

Во власти времени
С тех пор, как время на обдумывание ходов стали контролировать шахматные часы, редко какой турнир обходится без поражений, зафиксированных в результате просрочек. Среди шахматистов, страдающих постоянной нехваткой игрового времени, есть свои

Уменьшение и увеличение вольта

Уменьшение и увеличение вольта
«Уменьшение вольта» и «увеличение вольта» происходит на движении и предназначается для того, чтобы познакомить всадника и лошадь с уменьшением и увеличением радиуса поворота. Их выполняют точно так, как повороты на движении со вписанными

Уменьшение количества гребков и «плавательный гольф»: два испытания вашей чувственной практики

Уменьшение количества гребков и «плавательный гольф»: два испытания вашей чувственной практики
Естественно, смысл чувственной практики состоит не в том, чтобы лучше чувствовать, а в том, чтобы лучше плавать, усовершенствовать свой гребок. Как вы помните, эффективный

Сохранение правильной позы во время бега и уменьшение количества шагов

Сохранение правильной позы во время бега и уменьшение количества шагов
Джо положил бечевку на расстоянии 0,9 м от моей ведущей ноги и велел выполнить следующие требования:1. В стойке на старте держать голову опущенной, но смотреть на бечевку, возле которой должна

г) метаболическая емкость – меньше чем у аэробного пути ресинтеза АТФ, это определяется малым временем функционирования с максимальной мощностью.

  • 3. Гликолитический (анаэробно-лактатный) путь ресинтеза АТФ. Этот путь ресинтеза АТФ включается в действие при работе высокой мощности, которую необходимо поддерживать более 10 секунд, это время, когда мощность креатинфосфатного пути ресинтеза АТФ уже снижается. При гликолитическом пути ресинтеза АТФ окисляемым веществом выступает внутримышечный гликоген и глюкоза (анаэробный распад клюкозы), приносимая кровью в мышцы из резервных депо, например, из печени. Одним из продуктов гликолиза выступает молочная кислота (лактат). Химические преобразования представлены на схеме 3.

    Данный путь ресинтеза АТФ характеризуется следующими критериями:

    • а) максимальная мощность – 750-850 кал/мин*кг. Примерно в два раза превышает данный показатель у тканевого дыхания. Такой показатель максимальной мощности объясняется высоким содержанием гликогена в мышце и наличием механизмов активации деятельности ферментов, увеличивающих скорость гликолиза в 2000 раз;
    • б) время развертывания – 20-30 секунд. Такое короткое время развертывания, объясняется наличием всех компонентов гликолиза в саркоплазме мышцы. Так же, активатором гликолиза выступают ионы Ca++, мы уже говорили, что их концентрация в мышце, под действием двигательного импульса увеличивается в 1000 раз;
    • в) время работы с максимальной мощностью – 2-3 минуты. Это объясняется тем, что гликолиз протекает с высокой скоростью, что вызывает быстрое истощение окисляемых веществ. Еще одной причиной столь непродолжительного функционирования, выступает накопление в мышечной ткани продуктов химической реакции, в частности молочной кислоты. Повышение концентрации лактата в мышце приводит к смещению водородного показателя в кислую сторону, это негативно отражается на активности ферментов осуществляющих гликолиз;
    • г) метаболическая емкость – выше чем у креатинфосфатного пути, но ниже аэробного. Это определяется временными и мощностными факторами функционирования данного пути ресинтеза АТФ

Теперь затронем вопрос соотношения между тремя путями ресинтеза АТФ. Исходной переменной, от которой будет зависеть вовлеченность каждого из процессов энергообеспечения, выступает мощность выполняемой работы. Чем выше мощность работы, тем больше количества АТФ необходимо произвести в единицу времени. Самое большое количество АТФ в единицу времени производится в процессе креатинфосфатной реакции, ее показатель лежит в диапазоне от 900 до 1100 кал/мин*кг. На втором месте по этому показателю находится гликолитический механизм энергообеспечения, его показатель приблизительно равен 800 кал/мин*кг.

Самым низким показателем максимальной мощности процесса энергообеспечения обладает аэробный механизм, примерно 400 кал/мин*кг. Энергообеспечение не может обеспечиваться исключительно одним из рассматриваемых механизмов в чистом виде, при работе любой мощности, все пути ресинтеза АТФ внося свой вклад в энергообеспечение, но в зависимости от мощности, один из
механизмов является ведущим.
Например, выполняя работу максимальной мощности, ведущим механизмом энергообеспечения будет выступать креатинфосфатный путь ресинтеза АТФ, как только будет исчерпан потенциал данного механизма энергообеспечения, нам придется снизить мощность выполняемой работы, либо прекратить ее выполнение.

В качестве примера, хорошо иллюстрирующего вышесказанное, представьте, что вы хотите пробежать 3000 метров, удерживая максимальную скорость, вы вышли на стартовую линию и по сигналу стартового пистолета начали свой бег. На первых метрах дистанции, вы уверенно набираете скорость, энергетический запрос на выполнение данной работы возрастает.

Набрав максимальную скорость, примерно к 60 метру, вы чувствуете, что бежать быстрее не получается и стараетесь удерживать максимальную скорость, в этот момент, ваш энергетический запрос стабилизировался, а механизмы энергообеспечения вышли на максимальную мощность.

И вдруг, вы почувствовали, примерно на 110 метре дистанции, что вы больше не можете удерживать максимальную скорость, вы начинаете замедляться, именно в этот момент, вы попадаете в так называемую зону метаболического перехода, когда механизм энергообеспечения, прежде обеспечивающий поддержание максимальной мощности работы исчерпал свой ресурс, энергообеспечение «передается» следующему механизму, гликолитическому процессу, обладающего меньшей максимальной мощностью энергообеспечения.

Спустя еще несколько минут, 2-3 минуты, вы заметите, что ваша скорость продолжает снижаться, энергообеспечение переходит в «руки» аэробного процесса. К концу дистанции, ведущим путем ресинтеза АТФ уже будет выступать аэробный механизм.
В начале дистанции, развив максимальную скорость, энергообеспечение нашей работы, обеспечивалось креатинфосфатным путем ресинтеза АТФ, котрый обладает самым высоким уровнем максимальной мощности, а заканчивали дистанцию, используя аэробное энергообеспечение, обладающее наименьшей мощностью.

В данном случае, мы не учитываем финишный рывок (спурт), который выполняется за счет креатинфосфатного пути, успеваюшего частично восстановить свой потенциал, пока мы находились в зоне аэробной работы. Схематично, вышесказанное можно представить следующим образом (схема 4).

 Примечание: <br>ось Х – время, с, мин (размерность не соблюдена); <br>ось У – мощность энергопроизводства, кал/мин*кг;<br>сектор 1 – место выхода креатинфосфатного пути энергообеспечения на максимальную мощность; <br>сектор 2 – место метаболического перехода между креатинфосфатным и гликолитическим механизмами энергообеспечения;<br>сектор 3 – место метаболического перехода между гликолитическим и аэробным энергообеспечением; штриховой линией обозначается суммарная выработка АТФ
Примечание:
ось Х – время, с, мин (размерность не соблюдена);
ось У – мощность энергопроизводства, кал/мин*кг;
сектор 1 – место выхода креатинфосфатного пути энергообеспечения на максимальную мощность;
сектор 2 – место метаболического перехода между креатинфосфатным и гликолитическим механизмами энергообеспечения;
сектор 3 – место метаболического перехода между гликолитическим и аэробным энергообеспечением; штриховой линией обозначается суммарная выработка АТФ

Теперь, когда мы имеем общее представление об энергообеспечении мышечной деятельности, можно осуществить перенос общих знаний в рамки спортивного скалолазания, используя дидактический принцип «от общего к частному». Рассмотрим энергообеспечение в трех, основных соревновательных дисциплинах спортивного скалолазания, в боулдеринге, трудности и скорости.

Но для рассмотрения картины энергообеспечения, нам необходимо ввести новое понятие – «мощность удержания зацепа». Это понятие актуально тем, что даже два одинаковых зацепа, расположенных на плоскостях с разными углами наклона, могут отличаться по показателю энергетического запроса для одного спортсмена. В данном случае, описанное выше положение, является исключительно моим субъективным допущение и безусловно требует экспериментального (констатирующего) подтверждения с использованием инструментальных методов. Мощность удержания зацепа занимает центральное место в описании процессов энергообеспечения.

Дальнейшая разработка данного понятия, может привести к использованию данного понятия, как одного из объективных параметров трассы, на сегодняшний день трассы оцениваются субъективно. Мощность удержания зацепа зависит от многих переменных, например, от массы спортсмена, от способа удержания зацепа, от технической подготовленности спортсмена и других. В дальнейшем данное понятие можно будет использовать, например, для оценки технической подготовленности спортсменов.

Боулдеринг, дисциплина, с которой мы начнем описание процессов энергообеспечения. Задача в боулдеринге – пройти серию коротких, но очень сложных трасс. Еще одно понятие, которое мы будем активно использовать – спортивное (соревновательное, специализированное) упражнение, есть процесс прохождения конкретного маршрута в боулдеринге, трудности или скорости, с соблюдением соревновательных условий.
Когда мы проходим предельную для себя боулдеринговую трассу, мышцы – сгибатели пальцев развивают максимальную силу, чтобы удерживать зацепы, соответственно развивается максимальная для нас мощность удержания зацепа. Удерживая такую зацепу даже три секунды, чтобы, например, перенести ногу, в наших мышцах должно ресентезироваться определенное количество АТФ, мы делаем следующий перехват и удерживаем следующую зацепу еще 2 секунды и срываемся, наша система энергообеспечения не смогла предоставить необходимое количество энергии (количество АТФ) для дальнейшего удержания зацепа.

Как правило процесс преодоления соревновательной трассы в боулдеринге занимает небольшое количество времени, приблизительно 30 секунд, это время зависит от параметров трассы. Неудачные попытки занимают еще меньше времени. Поэтому энергообеспечение в боулдеринге осуществляется креатинфосфатным и частично гликолитическим путями ресинтеза АТФ В трудности дело обстоит иначе, задача в трудности сводится к преодолению длинной соревновательной трассы, 50-60 зацепов (финалы Кубков мира).
Время, затрачиваемое спортсмена на преодоление такой трассы, приблизительно 5-6 минут.
Мощность удержания отдельных зацепов ниже по сравнению с боулдерингом, исключения могут составлять ключевые участки трассы. Поэтому энергообеспечение осуществляется преимущественно гликолитическим процессом, мышцы – сгибатели пальцев в момент срыва «забиты» (утомлены), чувствуется жжение, оно связано с накоплением в мышце продукта гликолитического энергообеспечения – молочной кислотой.
Мышцы «набухают», это результат смещения водородного показателя (рН) внутри мышечной клетки в кислую сторону, вызывающего изменение проницаемости «стенок» клетки для молекул воды и вода из межклеточного пространства стремиться внутрь клетки.
В скоростном лазании спортсмены развивают высочайшую мощность, пробегая эталонную трассу за 5,6 секунды, спортсмен массой 70 кг развивает мощность в 1839 Вт. Поэтому энергообеспечение в скоростном лазании обеспечивается креатинфосфатным путем ресинтеза АТФ.

В заключительной части статьи поговорим о том, какими способами можно повысить эффективность энергообеспечения на тренировочных занятиях. Эффективность энергообеспечения можно повысить совокупностью двух показателей, первый показатель – мощность процесса энергообеспечения, повышается за счет увеличения ферментативной активности в том или ином процессе энергообеспечения, второй показатель – емкость механизма энергообеспечения, повышается за счет увеличения концентрации продуктов, принимающих участие в окислительных процессах того или иного пути ресинтеза АТФ.

Результатом тренировок, направленных на повышение эффективности креатинфосфатного пути ресинтеза АТФ станет: увеличение концентрации в мышцах креатинфосфата и повышение активности фермента креатинкиназы в совокупности это приведет к повышению так называемого алактатного кислородного долга.

Результатом тренировок, направленных на повышение эффективности гликолитического пути ресинтеза АТФ станет: увеличение концентрации в мышечных клетках внутримышечного гликогена и повышение активности основных ферментов гликолиза – фосфорилазы и фосфофруктокиназы. Так же повысится резистентность (нечувствительность) тканей к снижению водородного показателя (рН), повысится эффективность буферных систем крови.

Ни в коем случае нельзя забывать о тренировке аэробного механизма энергообеспечения. Это очень важно, для представителей всех специализаций. В трудности аэробный механизм помогает восстановить концентрацию креатинфосфата в местах «отдыха» на трассе, хорошо развитые дыхательная и сердечно-сосудистая системы и система крови помогут утилизировать часть лактата. В боулдеринге, аэробный механизм так же помогает восстановить потенциал креатинфосфатного пути ресинтеза АТФ в перерыве между попытками и трассами (в рамках соревнований). В скоростном лазании, аэробный компонент полезен в случаях перестартовок, обеспечивая восстановление ведущего пути ресинтеза АТФ для данного соревновательного упражнения.

Задача данной статьи – познакомить с механизмами энергообеспечения мышечной деятельности, многие аспекты, затронутые в ней, раскрыты поверхностно, т.к. статья ориентирована на широкий круг читателей. Методики воспитания отдельных видов выносливости будут описаны в следующих статьях.

Все замечания и пожелания можно оставлять в комментариях или отправлять лично автору на электронный адрес: sokolovsergei@outlook.com

Понравилась статья? Поделить с друзьями:

Другие крутые статьи на нашем сайте:

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest

0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии