Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Сайты, меню, вход, новости
Задания
Версия для печати и копирования в MS Word
Спрятать решение
Решение.
Найдем, в какой момент времени после начала работы температура станет равной К. Задача сводится к решению неравенства
при заданных значениях параметров a и b:
Через 2 минуты после включения прибор нагреется до 1760 К, и при дальнейшем нагревании может испортиться. Таким образом, прибор нужно выключить через 2 минуты.
Ответ: 2.
Спрятать решение
·
·
Курс Д. Д. Гущина
·
Гость 25.01.2013 22:54
По условию нужно найти НАИБОЛЬШЕЕ время, через которое нужно отключать прибор, поскольку 18 больше чем 2, нужно написать в ответе 2. Или я не права? Объясните, пожалуйста.
Служба поддержки
Через 2 минуты после включения прибор нагреется до 1760 К, далее будет нагреваться, а потом сгорит. Поэтому прибор нужно выключить через 2 минуты.
Задание 10. Математика ЕГЭ. Найдите, через какое наибольшее время после начала работы нужно отключить прибор.
Задание. Для нагревательного элемента некоторого прибора экспериментально была получена зависимость температуры (в К) от времени работы:
T(t) = T0 + bt + αt2,
где t – время (в мин.), T0 = 1600 К, α = – 5 К/мин2, b = 105 К/мин. Известно, что при температуре нагревательного элемента свыше 1870 К прибор может испортиться, поэтому его нужно отключить. Найдите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.
Решение:
По условию задачи T0 = 1600 К, α = – 5 К/мин2, b = 105 К/мин, T(t) = 1870 К.
Подставим числовые значения в формулу T(t) = T0 + bt + αt2, получим
1870 = 1600 + 105t – 5t2
5t2 – 105t + 270 = 0
D = 75
t1 = 3 и t2 = 18
Следовательно, t = 3 мин – это наибольшее время после начала работы, когда нужно отключить прибор, так как превышение этого времени приведет к его поломку. А второй раз через 18 мин прибор не сможет сломаться.
Ответ: 3
Оставить комментарий
Рубрики
- Демоверсия ЕГЭ по информатике
- Демоверсия ЕГЭ по математике
- Демоверсия ОГЭ по информатике
- Демоверсия ОГЭ по математике
- Материалы по аттестации
- Решаем ЕГЭ по математике
- Задание 1
- Задание 10
- Задание 11
- Задание 12
- Задание 13
- Задание 14
- Задание 15
- Задание 16
- Задание 2
- Задание 3
- Задание 4
- Задание 5
- Задание 6
- Задание 7
- Задание 8
- Задание 9
- Решаем ОГЭ по математике
- Задание 21
- Задание 22
- Задание 24
- Скачать экзаменационные варианты по информатике
- ЕГЭ по информатике
- ОГЭ по информатике
- Скачать экзаменационные варианты по математике
- ЕГЭ по математике
- ОГЭ по математике
- Тематическое планирование
Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле T(t) = T0 + bt + at2, где t − время в минутах, T0 = 1300 К, a = К/мин2, b = 98 К/мин. Известно, что при температуре нагревателя свыше 1720 К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ выразите в минутах.
Источники: fipi, os.fipi.
Решение:
T0 = 1300 К
a = К/мин2
b = 98 К/мин
T = 1720 К
t – ?
Подставим все значения в формулу и найдём t:
T(t) = T0 + bt + at2
–14t2 + 294t – 1260 = 0 |:14
–t2 + 21t – 90 = 0
D = 212 – 4·(–1)·(–90) = 81 = 92
Через 6 минут прибор нагреется до максимума, и его надо будет отключить, к 15 минутам прибор сгорит.
Ответ: 6.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 4.5 / 5. Количество оценок: 20
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
Зависимость температуры (в градусах Кельвина)
Дата: 2014-09-29
6871
Категория: Физические задачи
Метка: ЕГЭ-№8
27962. Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур определяется выражением закону T(t) = T0+bt+at2, где
t – время в минутах, T0 = 1400К, а = –10 К/мин2, b = 200 К/мин
Известно, что при температуре нагревателя свыше 1760К прибор может испортиться, поэтому его нужно отключать. Определите, через какое наибольшее время после начала работы нужно отключать прибор. Ответ выразите в минутах.
Из условия понятно, что максимально возможная некритическая температура 1760К (при дальнейшем росте прибор может испортиться). Решение задачи сводится к решению неравенства:
Решением являются два интервала: (–∞;2] и [18;+∞).
Так как время величина неотрицательная (t≥0), то для поставленного условия
t ∊[0;2] и [18;+∞).
Получили два интервала удовлетворяющих решению неравенства. Нужно найти, через какое наибольшее время после начала работы необходимо отключать прибор.
Представим физическую картину процесса. Включаем прибор в момент времени t = 0, через 2 минуты температура достигает 1760К. Затем температура повышается, из-за чего прибор может испортиться. Понятно, что отключать его нужно при t = 2 минуты.
Можно проверить, что будет происходить, если прибор не отключить.
Пусть прибор проработает 2,1 минуты, вычислим температуру:
Температура выше допустимой.
Решения при t ≥ 18 не имеют физического смысла для данной задачи.
Второй способ решения.
Начиная с нуля подставляем значения времени в формулу:
Ответ: 2
Используя этот сайт, Вы соглашаетесь с тем, что мы сохраняем и используем файлы cookies, а также используем похожие технологии для улучшения работы сайта.
Ok
Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получена экспериментально и на исследуемом интервале температур дается выражением:
T(t) = T0 + bt + at2
где T0 = 1280 К, a = −10 К/мин, b = 120 К/мин2.
Известно, что при температуре нагревателя свыше 1600 К прибор может испортиться, поэтому его нужно отключать. Определите (в минутах), через какое наибольшее время после начала работы нужно отключать прибор.
Светило науки — 893 ответа — 5069 раз оказано помощи
ависимость
температуры (в градусах Кельвина) от времени (в минутах) для
нагревательного элемента некоторого прибора была получена
экспериментально и на исследуемом интервале температур дается
выражением:
T(t) = T0 + bt + at2
где T0 = 1280 К, a = −10 К/мин, b = 120 К/мин2.
Известно, что при температуре нагревателя свыше 1600 К прибор может
испортиться, поэтому его нужно отключать. Определите (в минутах), через
какое наибольшее время после начала работы нужно отключать прибор.
Решение
Прибор нужно отключить при достижении температуры 1600 К
запишем уравнение
-10t²+120t+1280 = 1600
-10t²+120t -320 = 0
t² — 12t+32 = 0
D =12²-4*32 =144-128=16
Наименьшее время составляет 4 минуты
Ответ 4 минуты
22 ноября 2011
Рассмотрим очередные 8 задач B12 из ЕГЭ по математике. Здесь встречаются 2 темы: температура прибора и КПД теплового двигателя. Для разнообразия часть задач, в которых встречаются квадратные уравнения, будем решать через дискриминант (см. урок «Решение квадратных уравнений»), а часть — через формулы Виета (см. урок «Теорема Виета»).
Задача. Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получении экспериментально и на исследуемом интервале температур дается выражением T(t) = T0 + at + bt2, где T0 = 340 K, a = 28 К/мин, b = −0,2 К/мин. Известно, что при температурах нагревателя свыше 1000 К прибор может испортиться, поэтому его надо отключать. Определите (в минутах), через какое наибольшее время после начала работы надо отключать прибор.
Все вертится вокруг температуры, которая меняется по закону: T(t) = T0 + at + bt2. Требуется выяснить, в какой момент эта температура пересечет отметку в 1000 К. Поскольку температура T0, а также коэффициенты a и b нам известны, составим и решим уравнение:
1000 = 340 + 28t − 0,2t2;
0,2t2 −28t + 660 = 0 — перенесли все слагаемые влево;
t2 − 140t + 3300 = 0 — умножили обе стороны на 5.
Дискриминант: D = 1402 − 4 · 1 · 3300 = 6400 = 64 · 100. Очевидно, что корень из дискриминанта равен 80. Корни квадратного уравнения:
t1 = (140 + 80) : 2 = 110;
t2 = (140 − 80) : 2 = 30.
Получается, что у нас есть два кандидата на ответ: числа 110 и 30. Требуется найти наибольшее время, и поэтому многие выбирают ответ 110.
Но давайте вспомним, что означают эти числа. Итак, в момент времени t = 30 минут, а также в момент времени t = 110 минут температура пересекает критическую отметку в 1000 К — ту самую, после которой прибор может испортиться. Грубо говоря, прибор испортится через 30 минут и через 110.
Вывод: прибор надо отключить уже через 30 минут, поскольку к 110 минутам он будет давно испорчен.
Задача. Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получении экспериментально и на исследуемом интервале температур дается выражением T(t) = T0 + at + bt2, где T0 = 520 K, a = 22 К/мин, b = −0,2 К/мин. Известно, что при температурах нагревателя свыше 1000 К прибор может испортиться, поэтому его надо отключать. Определите (в минутах), через какое наибольшее время после начала работы надо отключать прибор.
Задача полностью аналогична предыдущей — только коэффициенты другие. Предельно допустимую температуру мы знаем, поэтому составим и решим уравнение:
1000 = 520 + 22t − 0,2t2;
0,2t2 − 22t + 480 = 0 — собрали все слева;
t2 − 110t + 2400 = 0 — умножили обе стороны на 5.
Задача свелась к приведенному квадратному уравнению. По теореме Виета:
t1 + t2 = −(−110) = 110;
t1 · t2 = 2400.
Очевидно, корни: 80 и 30, т.к. 80 + 30 = 110; 80 · 30 = 2400. Получаем, что предельная температура будет достигнута через 30 минут и через 80. Следовательно, прибор надо отключить уже через 30 минут.
Задача. Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получении экспериментально и на исследуемом интервале температур дается выражением T(t) = T0 + at + bt2, где T0 = 800 K, a = 52 К/мин, b = −0,4 К/мин. Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его надо отключать. Определите (в минутах), через какое наибольшее время после начала работы надо отключать прибор.
Задача аналогична предыдущей, поэтому рассмотрим краткое решение. Именно такой объем вычислений будет достаточным обоснованием ответа в настоящем ЕГЭ по математике.
2000 = 800 + 52t − 0,4t2;
0,4t2 − 52t + 1200 = 0;
t2 − 130t + 3000 = 0 — разделили все на коэффициент 0,4.
Решаем через дискриминант: D = 1302 − 4 · 1 · 3000 = 4900. Корень из дискриминанта: 70. Найдем корни уравнения:
t1 = (130 + 70) : 2 = 100;
t2 = (130 − 70) : 2 = 30.
Из двух чисел выбираем наименьшее — это снова число 30.
Задача. Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получении экспериментально и на исследуемом интервале температур дается выражением T(t) = T0 + at + bt2, где T0 = 280 K, a = 26 К/мин, b = −0,2 К/мин. Известно, что при температурах нагревателя свыше 1000 К прибор может испортиться, поэтому его надо отключать. Определите (в минутах), через какое наибольшее время после начала работы надо отключать прибор.
Все так же − составляем и решаем уравнение:
1000 = 280 + 26t − 0,2t2;
0,2t2 − 26t + 720 = 0 — перенесли все слагаемые в одну сторону;
t2 − 130t + 3600 = 0 — умножили каждое слагаемое на 5.
Это приведенное квадратное уравнение, которое хорошо решается по теореме Виета:
t1 + t2 = −(−130) = 130 = 90 + 40;
t1 · t2 = 3600 = 90 · 40.
Из приведенных формул очевидно, что корни: 90 и 40. Как и прежде, придется выбрать наименьшей корень — число 40. Потому что до 90 минут прибор уже «не доживет».
Задача. Зависимость температуры (в градусах Кельвина) от времени (в минутах) для нагревательного элемента некоторого прибора была получении экспериментально и на исследуемом интервале температур дается выражением T(t) = T0 + at + bt2, где T0 = 1100 K, a = 36 К/мин, b = −0,2 К/мин. Известно, что при температурах нагревателя свыше 2000 К прибор может испортиться, поэтому его надо отключать. Определите (в минутах), через какое наибольшее время после начала работы надо отключать прибор.
Снова задача-клон, которая сводится к уравнению:
2000 = 1100 + 36t − 0,2t2;
0,2t2 − 36t + 900 = 0;
t2 − 180t + 4500 = 0.
Перед нами снова приведенное уравнение. По теореме Виета:
t1 + t2 = −(−180) = 180 = 150 + 30;
t1 · t2 = 4500 = 150 · 30.
Теперь корни очевидны — это числа 150 и 30. В ответ пойдет наименьшее число, т.е. прибор надо выключить через 30 минут.
Задача. Коэффициент полезного действия некоторого двигателя определяется формулой:
При каком минимальном значении температуры нагревателя T1 КПД этого двигателя будет не меньше 60%, если температура холодильника T2 = 200? Ответ дайте в градусах Кельвина.
Для начала упростим исходную формулу. Умножим обе стороны равенства на переменную T1, получим:
η · T1 = (T1 − T2) · 100.
Знак процентов мы специально убрали, поскольку в конечном уравнении никаких процентов не может быть — есть только числа. По условию задачи, нам известны КПД η = 60% и температура холодильника T1 = 200. Подставим эти числа в формулу — получим уравнение:
60 · T1 = (T1 − 200) · 100.
Обратите внимание: единицы измерения снова не пишутся. Никаких процентов, никаких градусов Кельвина — только обычные числа. В принципе, аналогично следует поступать во всех задачах B12. Просто до сих пор мы не акцентировали внимание на этом моменте, но с процентами надо работать аккуратно.
Итак, решаем уравнение:
60 · T1 = (T1 − 200) · 100;
60T1 = 100T1 − 20 000 — раскрыли скобки;
60T1 − 100T1 = −20 000 — собрали все слагаемые с T1 слева;
−40T1 = −20 000;
T1 = 500 — разделили все на −40.
Как видим, задача свелась к простому линейному уравнению, которое имеет один корень. Это очень хорошо, поскольку, в отличие от квадратных уравнений, здесь не придется размышлять, какой из корней записать в ответ.
Задача. Коэффициент полезного действия некоторого двигателя определяется формулой:
При каком минимальном значении температуры нагревателя T1 КПД этого двигателя будет не меньше 60%, если температура холодильника T2 = 400? Ответ дайте в градусах Кельвина.
Задача полностью аналогична предыдущей. Преобразуем исходную формулу, а затем подставим в нее известные переменные:
η · T1 = (T1 − T2) · 100 — преобразовали формулу;
60 · T1 = (T1 − 400) · 100 — подставили числа;
60T1 − 100T1 = −40 000 — группируем слагаемые, содержащие переменную T1;
−40T1 = −40 000;
T1 = 1000 — разделили обе стороны на коэффициент −40.
Задача. Коэффициент полезного действия некоторого двигателя определяется формулой:
При каком минимальном значении температуры нагревателя T1 КПД этого двигателя будет больше 80%, если температура холодильника T2 = 100? Ответ дайте в градусах Кельвина.
Еще одна задача-клон. Приведу лишь краткое решение:
η · T1 = (T1 − T2) · 100 — преобразованная формула;
80 · T1 = (T1 − 100) · 100 — подставили числа;
80T1 − 100T1 = −10 000;
−20T1 = −10 000;
T1 = 500 — это и есть ответ.
Смотрите также:
- Упрощаем решение задач с помощью замены переменной
- Решение задач B12: №440—447
- Тест к уроку «Что такое логарифм» (тяжелый)
- Сводный тест по задачам B12 (2 вариант)
- Как быстро запомнить таблицу синусов и косинусов
- ЕГЭ 2022, задание 6. Касательная к графику функции