Задача 9. Случайные приращения цен акций двух компаний за день имеют дисперсии D=1 и D=2, а коэффициент их корреляции =0,7. Найти дисперсию приращения цены портфеля из 5 акций первой компании и 3 акций второй компании.
Решение. Используя свойства дисперсии, ковариации и определение коэффициента корреляции, получаем:
.
Задача 10. Распределение двумерной случайной величины задано таблицей:
hx |
1 |
3 |
4 |
8 |
3 |
0,15 |
0,06 |
0,25 |
0,04 |
6 |
0,30 |
0,10 |
0,03 |
0,07 |
Найти условное распределение и условное математическое ожидание h при x=1.
Решение. Условное математическое ожидание равно
.
Из условия задачи найдем распределение составляющих h и x (последний столбец и последняя строка таблицы).
hx |
1 |
3 |
4 |
8 |
Ph |
3 |
0,15 |
0,06 |
0,25 |
0,04 |
0,50 |
6 |
0,30 |
0,10 |
0,03 |
0,07 |
0,50 |
Px |
0,45 |
0,16 |
0,28 |
0,11 |
1 |
Поскольку , то условные вероятности находятся по формулам
,
,
а искомое условное математическое ожидание равно .
6. Непрерывные случайные величины
Задача 1. Плотность распределения непрерывной случайной величины имеет вид:
Определить константу C, построить функцию распределения Fx(x) и вычислить вероятность .
Решение. Константа C находится из условия В результате имеем:
откуда C=3/8.
Чтобы построить функцию распределения Fx(x), отметим, что интервал [0,2] делит область значений аргумента x (числовую ось) на три части: Рассмотрим каждый из этих интервалов. В первом случае (когда x<0) вероятность события (x<x) вычисляется так:
так как плотность x на полуоси равна нулю. Во втором случае
Наконец, в последнем случае, когда x>2,
так как плотность обращается в нуль на полуоси
.
Итак, получена функция распределения
Следовательно,
Задача 2. Для случайной величины x из задачи 1 вычислить математическое ожидание и дисперсию.
Решение.
Далее,
и значит,
Задача 3. Пусть задана случайная величина . Вычислить вероятность
.
Решение. Здесь и
. Согласно указанной выше формуле, получаем:
7. Функции от случайных величин. Формула свертки
Задача 1. Случайная величина x равномерно распределена на отрезке [0, 2]. Найти плотность случайной величины .
Решение.
Из условия задачи следует, что
Далее, функция является монотонной и дифференцируемой функцией на отрезке [0, 2] и имеет обратную функцию
, производная которой равна
Кроме того,
,
. Следовательно,
Значит,
Задача 2. Пусть двумерный случайный вектор (x, h) равномерно распределен внутри треугольника . Вычислить вероятность неравенства x>h.
Решение. Площадь указанного треугольника равна
(см. рис. 7.1). В силу определения двумерного равномерного распределения совместная плотность случайных величин x, h равна
Событие соответствует множеству
на плоскости, т.е. полуплоскости. Тогда вероятность
Рис. 7.1.
На полуплоскости B совместная плотность равна нулю вне множества
и 1/2 – внутри множества
. Таким образом, полуплоскость B разбивается на два множества:
и
. Следовательно, двойной интеграл по множеству B представляется в виде суммы интегралов по множествам
и
, причем второй интеграл равен нулю, так как там совместная плотность равна нулю. Поэтому
.
Если задана совместная плотность распределения случайной пары (x,h), то плотности
и
составляющих x и h называются частными плотностями и вычисляются по формулам:
Для непрерывно распределенных случайных величин с плотностями рx(х), рh(у) независимость означает, что при любых х и у выполнено равенство
.
Задача 3. В условиях предыдущей задачи определить, независимы ли составляющие случайного вектора x и h.
Решение. Вычислим частные плотности и
. Имеем:
Аналогично,
Очевидно, что в нашем случае , и потому случайные величины x и h зависимы.
Числовые характеристики для случайного вектора (x,h) можно вычислять с помощью следующей общей формулы. Пусть — совместная плотность величин x и h, а y(х,у) — функция двух аргументов, тогда
.
В частности,
Задача 4. В условиях предыдущей задачи вычислить .
Решение. Согласно указанной выше формуле имеем:
.
Представив треугольник в виде
,
двойной интеграл можно вычислить как повторный:
Задача 5. Пусть x и h — независимые случайные величины, распределенные по показательному закону с параметром . Вычислить плотность суммы
.
Решение. Поскольку x и h распределены по показательному закону с параметром , то их плотности равны
Следовательно,
Поэтому
Если x<0, то в этой формуле аргумент функции отрицателен, и поэтому
. Следовательно,
Если же
, то имеем:
Таким образом, мы получили ответ:
Задача 6. Двумерный случайный вектор (x, h) равномерно распределен внутри треугольника . Найти условное распределение x при условии h=y и функцию регрессии jx|h(y).
Решение. Как было показано ранее (см. задачи 2 и 3),
и
Поделив первую плотность на вторую, получаем условную плотность:
Таким образом, речь идет о равномерном распределении на промежутке (0, 2–y). Функцию регрессии вычисляем как математическое ожидание равномерного распределения. Получаем jx|h(y)=(2–y)/2, 0<y<2.
8. Неравенство Чебышева. Центральная предельная теорема
Задача 1. В 400 испытаниях Бернулли вероятность успеха в каждом испытании равна 0,8. С помощью неравенства Чебышева оценить вероятность того, что разница между числом успехов в этих испытаниях и средним числом успехов будет меньше 20.
Решение. Число успехов в этих испытаниях распределено по закону Бернулли, поэтому среднее число успехов равно М=np=400×0,8=320, а дисперсия D=npq=400×0,8×0,2=64. Тогда в силу неравенства Чебышева имеем:
Вычислим эту же вероятность с помощью приближенной (интегральной) формулы Муавра-Лапласа:
Задача 2. В продукции цеха детали отличного качества составляют 50. Детали укладываются в коробки по 200 шт. в каждой. Какова вероятность того, что число деталей отличного качества в коробке отличается от 100 не более, чем на 5?
Решение. Пусть i случайное число деталей отличного качества в i-ой коробке, тогда при n=200, p=q=1/2 получим:
Задача 3. Используя условия задачи 1, указать, в каких границах с вероятностью 0,997 находится число деталей отличного качества в коробке.
Решение. По таблице функции Лапласа при условии находим u=3, и следовательно, Sn лежит в пределах
, т.е. число деталей отличного качества в коробке с вероятностью 0,997 находится в пределах 100 21.
Задача 3. Используя условия задачи 1, определить, сколько деталей надо взять, чтобы с вероятностью, не меньшей 0,99, можно было утверждать, что число деталей отличного качества среди них не менее 100.
Решение. Обозначим . Используя нормальное приближение, получаем
.
Отсюда , а из таблицы 2 и свойств функции Лапласа получаем неравенство
. Обозначив
, с учетом p=q=1/2, приходим к квадратному неравенству х2 –2,3х–2000, решая которое, получаем n236.
Можно предложить и другой метод. А именно, пусть i – число деталей, которые пришлось перебрать, чтобы найти i-ую деталь отличного качества (включая ее саму). Случайные величины имеют геометрическое распределение с параметром p=1/2. Можем вычислить M=1/p=2, D=(1p)/p2=2. Используя ЦПТ, получаем неравенство
,
откуда следует n200+14,142,32=232,8 или, округляя, n234.
Результаты получаются близкие, но первый метод более точен и потому предпочтительней. Вторым методом лучше пользоваться, если нужно определить границы, в которых лежит неизвестное число деталей.
Задача 4. Доходы жителей города имеют математическое ожидание 10 тыс. руб. и среднее квадратическое отклонение 2 тыс. руб. (в месяц). Найти вероятность того, что средний доход 100 случайно выбранных жителей составит от 9,5 до 10,5 тыс. руб.
Решение. Переформулируем условие задачи для суммарного дохода: он должен составлять от 950 до 1050 тыс. руб. Используя ЦПТ, получаем:
Задача 5. Срок службы электрической лампы имеет показательное распределение с математическим ожиданием 1000 часов. Найти вероятность того, что средний срок службы для 100 ламп составит не менее 900 часов.
Решение. Примем для простоты 1000 часов за единицу времени. Вспомним числовые характеристики показательного распределения: М= , D=
. Отсюда следует, что среднее квадратическое отклонение совпадает с математическим ожиданием (и оба они здесь равны единице). Переформулируя условие задачи для суммарного срока службы и используя ЦПТ, получаем:
16
Решение нового задания № 10 ЕГЭ 2022 по профильной математике из сборника Ященко.
На занятии рассмотрены некоторые задачи по теории вероятности из сборника с типовыми вариантами для подготовки к профильному ЕГЭ по математике 2022 под редакцией И.В. Ященко. Видео рекомендовано тем, кто владеет базовыми понятиями теории вероятности.
Видео представил YouTube канал Matesha Plus
→ Задание 10 ЕГЭ 2022 математика профильный уровень — практика
Купить ЕГЭ 2022 Математика. Профильный уровень. Типовые экзаменационные варианты. 36 вариантов
Для успешного выполнения задания 10 необходимо уметь моделировать реальные ситуации на языке теории вероятностей и статистики, вычислять в простейших случаях вероятности событий.
Связанные страницы:
Прототипы задания №1 профильного ЕГЭ 2022 по математике
Решение 17 задания ЕГЭ по профильной математике
Задания первой части ЕГЭ по математике
Задание 9 в профильном ЕГЭ по математике 2022 года. Графики функций
Задание 11 ЕГЭ 2022 по математике: «Наибольшее и наименьшее значения функции»
Большая презентация для подготовки к заданию 5 (B6) — теория вероятностей из ЕГЭ по математике профильного уровня. Подробный разбор подобных заданий.
Автор: учитель математики МБОУ СОШ №5 г. Радужный Е. Ю. Семёнова
Скачать презентацию
Просмотреть онлайн:
Рейтинг: 3.5 из 5.0
Проголосовало: 11
Комментарии
Всего комментариев: 0
Мы начнем с простых задач и основных понятий теории вероятностей.
Случайным
называется событие, которое нельзя точно предсказать заранее. Оно может либо произойти, либо нет.
Вы выиграли в лотерею — случайное событие. Пригласили друзей отпраздновать выигрыш, а они по дороге к вам застряли в лифте — тоже случайное событие. Правда, мастер оказался поблизости и освободил всю компанию через десять минут — и это тоже можно считать счастливой случайностью…
Наша жизнь полна случайных событий. О каждом из них можно сказать, что оно произойдет с некоторой вероятностью
. Скорее всего, вы интуитивно знакомы с этим понятием. Теперь мы дадим математическое определение вероятности.
Начнем с самого простого примера. Вы бросаете монетку. Орел или решка?
Такое действие, которое может привести к одному из нескольких результатов, в теории вероятностей называют испытанием
.
Орел и решка — два возможных исхода
испытания.
Орел выпадет в одном случае из двух возможных. Говорят, что вероятность
того, что монетка упадет орлом, равна .
Бросим игральную кость. У кубика шесть граней, поэтому возможных исходов тоже шесть.
Например, вы загадали, что выпадет три очка. Это один исход из шести возможных. В теории вероятностей он будет называться благоприятным исходом
.
Вероятность выпадения тройки равна (один благоприятный исход из шести возможных).
Вероятность четверки — тоже
А вот вероятность появления семерки равна нулю. Ведь грани с семью точками на кубике нет.
Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.
Очевидно, что вероятность не может быть больше единицы.
Вот другой пример. В пакете яблок, из них — красные, остальные — зеленые. Ни формой, ни размером яблоки не отличаются. Вы запускаете в пакет руку и наугад вынимаете яблоко. Вероятность вытащить красное яблоко равна , а зеленое — .
Вероятность достать красное или зеленое яблоко равна .
Определение вероятности. Простые задачи из вариантов ЕГЭ.
Разберем задачи по теории вероятностей, входящие в сборники для подготовки к ЕГЭ.
В фирме такси в данный момент свободно машин: красных, желтых и зеленых. По вызову выехала одна из машин, случайно оказавшихся ближе всего к заказчице. Найдите вероятность того, что к ней приедет желтое такси.
Всего имеется машин, то есть к заказчице приедет одна из пятнадцати. Желтых — девять, и значит, вероятность приезда именно желтой машины равна , то есть .
В сборнике билетов по биологии всего билетов, в двух из них встречается вопрос о грибах. На экзамене школьнику достаётся один случайно выбранный билет. Найдите вероятность того, что в этом билете не будет вопроса о грибах.
Очевидно, вероятность вытащить билет без вопроса о грибах равна , то есть .
Родительский комитет закупил пазлов для подарков детям на окончание учебного года, из них с картинами известных художников и с изображениями животных. Подарки распределяются случайным образом. Найдите вероятность того, что Вовочке достанется пазл с животным.
Задача решается аналогично.
Ответ: .
В чемпионате по гимнастике участвуют спортсменок: из России, из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая последней, окажется из Китая.
Давайте представим, что все спортсменки одновременно подошли к шляпе и вытянули из нее бумажки с номерами. Кому-то из них достанется двадцатый номер. Вероятность того, что его вытянет китайская спортсменка, равен (поскольку из Китая — спортсменок). Ответ: .
Ученика попросили назвать число от до . Какова вероятность того, что он назовет число кратное пяти?
Каждое пятое
число из данного множества делится на . Значит, вероятность равна .
Брошена игральная кость. Найдите вероятность того, что выпадет нечетное число очков.
Нечетные числа; — четные. Вероятность нечетного числа очков равна .
Ответ: .
Монета брошена три раза. Какова вероятность двух «орлов» и одной «решки»?
Заметим, что задачу можно сформулировать по-другому: бросили три монеты одновременно. На решение это не повлияет.
Как вы думаете, сколько здесь возможных исходов?
Бросаем монету. У этого действия два возможных исхода: орел и решка
Две монеты — уже четыре исхода:
Три монеты? Правильно, исходов, так как .
Два орла и одна решка выпадают в трех случаях из восьми.
Ответ: .
В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет очков. Результат округлите до сотых.
Бросаем первую кость — шесть исходов. И для каждого из них возможны еще шесть — когда мы бросаем вторую кость.
Получаем, что у данного действия — бросания двух игральных костей — всего возможных исходов, так как .
А теперь — благоприятные исходы:
Вероятность выпадения восьми очков равна .
Стрелок попадает в цель с вероятностью . Найдите вероятность того, что он попадёт в цель четыре раза выстрела подряд.
Если вероятность попадания равна — следовательно, вероятность промаха . Рассуждаем так же, как и в предыдущей задаче. Вероятность двух попадания подряд равна . А вероятность четырех попаданий подряд равна .
Вероятность: логика перебора.
В кармане у Пети было монеты по рублей и монеты по рублей. Петя, не глядя, переложил какие-то монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.
Мы знаем, что вероятность события равна отношению числа благоприятных исходов к общему числу исходов. Но как посчитать все эти исходы?
Можно, конечно, обозначить пятирублевые монеты цифрами , а десятирублевые цифрами — а затем посчитать, сколькими способами можно выбрать три элемента из набора .
Однако есть более простое решение:
Кодируем монеты числами: , (это пятирублёвые), (это десятирублёвые). Условие задачи можно теперь сформулировать так:
Есть шесть фишек с номерами от до . Сколькими способами можно разложить их по двум карманам поровну, так чтобы фишки с номерами и не оказались вместе?
Давайте запишем, что у нас в первом кармане.
Для этого составим все возможные комбинации из набора . Набор из трёх фишек будет трёхзначным числом. Очевидно, что в наших условиях и — это один и тот же набор фишек. Чтобы ничего не пропустить и не повториться, располагаем соответствующие трехзначные числа по возрастанию:
Все! Мы перебрали все возможные комбинации, начинающиеся на . Продолжаем:
Всего возможных исходов.
У нас есть условие — фишки с номерами и не должны оказаться вместе. Это значит, например, что комбинация нам не подходит — она означает, что фишки и обе оказались в не в первом, а во втором кармане. Благоприятные для нас исходы — такие, где есть либо только , либо только . Вот они:
134, 135, 136, 145, 146, 156, 234, 235, 236, 245, 246, 256 – всего благоприятных исходов.
Тогда искомая вероятность равна .
Сумма событий, произведение событий и их комбинации
Вероятность того, что новый электрический чайник прослужит больше года, равна 0,93. Вероятность того, что он прослужит больше двух лет, равна 0,87. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.
Проработав год, чайник может либо сломаться на второй год, либо благополучно служить и после 2 лет работы.
Пусть – вероятность того, что чайник прослужил больше года.
– вероятность того, что он сломается на второй год, – вероятность того, что он прослужит больше двух лет. Очевидно,
Ответ: 0,06
События, взаимоисключающие друг друга в рамках данной задачи, называются несовместными. Появление одного из несовместных событий исключает появление других.
Сумма двух событий – термин, означающий, что произошло или первое событие, или второе, или оба сразу.
Вероятность суммы несовместных событий равна сумме их вероятностей.
В нашей задаче события «чайник сломался на второй год работы» и «чайник работает больше двух лет» — несовместные. Чайник или сломался, или остается в рабочем состоянии.
На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук выйдет через выход А.
Пронумеруем развилки, на которых паук может случайным образом свернуть в ту или другую сторону.
Он может либо выйти в выход D, и вероятность этого события равна Либо уйти дальше в лабиринт. На второй развилке он может либо свернуть в тупик, либо выйти в выход В (с вероятностью На каждой развилке вероятность свернуть в ту или другую сторону равна а поскольку развилок пять, вероятность выбраться через выход А равна то есть 0,03125.
События А и В называют независимыми, если вероятность появления события А не меняет вероятности появления события В.
В нашей задаче так и есть: неразумный паук сворачивает налево или направо случайным образом, независимо от того, что он делал до этого.
Для нескольких независимых событий вероятность того, что все они произойдут, равна произведению вероятностей.
(А)
Два грузовика, работая совместно, вывозят снег с улицы Нижняя Подгорная, причем первый грузовик должен сделать три рейса с грузом снега, а второй — два. Вероятность застрять с грузом снега при подъеме в горку равна 0,2 для первого грузовика и 0,25 — для второго. С какой вероятностью грузовики вывезут снег с улицы Нижняя Подгорная, ни разу не застряв на горке?
Вероятность для первого грузовика благополучно одолеть горку Для второго Поскольку первый грузовик должен сделать 3 рейса, а второй – два, грузовики ни разу не застрянут на горке с вероятностью
Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Нарисуем все возможные исходы ситуации. Покупатель пришел в магазин, который принадлежит агрофирме, и купил яйцо. Надо найти вероятность того, что это яйцо из первого хозяйства.
Яйца могут быть только или из первого домашнего хозяйства, или из второго, причем эти два события несовместны. Других яиц в этот магазин не поступает.
Пусть вероятность того, что купленное яйцо из первого хозяйства, равна . Тогда вероятность того, что яйцо из второго хозяйства (противоположного события), равна .
Яйца могут быть высшей категории и не высшей.
В первом хозяйстве 40% яиц имеют высшую категорию, а 60% — не высшую. Это значит, что случайно выбранное яйцо из первого хозяйства с вероятностью 40% будет высшей категории.
Во втором хозяйстве 20% яиц высшей категории, а 80% — не высшей.
Пусть случайно выбранное в магазине яйцо — из первого хозяйства и высшей категории. Вероятность этого события равна произведению вероятностей:
Вероятность того, что яйцо из второго хозяйства и высшей категории, равна
Если мы сложим эти две вероятности, мы получим вероятность того, что яйцо имеет высшую категорию. По условию, высшую категорию имеют 35% яиц, значит, эта вероятность равна 0,35.
Мы получили уравнение:
Решаем это уравнение и находим, что – вероятность того, что яйцо, купленное у этой агрофирмы, оказалось из первого хозяйства.
Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
С чем пришел пациент в клинику? – С подозрением на гепатит. Возможно, он действительно болен гепатитом, а возможно, у его плохого самочувствия другая причина. Может быть, он просто съел что-нибудь. Вероятность того, что он болен гепатитом, равна 0,05 (то есть 5%). Вероятность того, что он здоров, равна 0,95 (то есть 95%).
Пациенту делают анализ. Покажем на схеме все возможные исходы:
Если он болен гепатитом, анализ дает положительный результат с вероятностью 0,9. То есть анализ покажет: «есть гепатит».
Заметим, что анализ не во всех случаях выявляет гепатит у того, кто действительно им болен. С вероятностью 0,1 анализ не распознает гепатит у больного.
Более того. Анализ может ошибочно дать положительный результат у того, кто не болеет гепатитом. Вероятность такого ложного положительного результата 0,01. Тогда с вероятностью 0,99 анализ даст отрицательный результат, если человек здоров.
Найдем вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
Благоприятные для этой ситуации исходы: человек болен, и анализ положительный (вероятность одновременного наступления этих двух событий равна ), или человек здоров, и анализ ложный положительный (вероятность одновременного наступления этих двух событий равна ). Так как события «человек болен» и «человек не болен» несовместны, то вероятность того, что результат анализа будет положительным, равна
Ответ: 0,0545.
Чтобы поступить в институт на специальность «Лингвистика», абитуриент З. должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Заметим, что в задаче не спрашивается, будет ли абитуриент по фамилии З. учиться и лингвистике, и коммерции сразу и получать два диплома. Здесь надо найти вероятность того, что З. сможет поступить хотя бы на одну из двух данных специальностей – то есть наберет необходимое количество баллов.
Для того чтобы поступить хотя бы на одну из двух специальностей, З. должен набрать не менее 70 баллов по математике. И по русскому. И еще – обществознания или иностранный.
Вероятность набрать 70 баллов по математике для него равна 0,6.
Вероятность набрать баллы по математике и русскому равна
Разберемся с иностранным и обществознанием. Нам подходят варианты, когда абитуриент набрал баллы по обществознанию, по иностранному или по обоим. Не подходит вариант, когда ни по языку, ни по «обществу» он не набрал баллов. Значит, вероятность сдать обществознание или иностранный не ниже чем на 70 баллов равна
В результате вероятность сдать математику, русский и обществознание или иностранный равна Это ответ.
Чтобы полностью освоить тему, смотрите . Это бесплатно.
Еще задачи ЕГЭ по теме
В-6-2014 (все 56 прототипов из банка ЕГЭ)
Уметь строить и исследовать простейшие математические модели (теория вероятностей)
1.В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.
Решение:
Количество исходов, при которых в результате броска игральных костей выпадет 8 очков, равно 5: 2+6, 3+5, 4+4, 5+3, 6+2. Каждый из кубиков может выпасть шестью вариантами, поэтому общее число исходов равно 6·6 = 36. Следовательно, вероятность того, что в сумме выпадет 8 очков, равна 5: 36=0,138…=0,14
2.В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.
Решeние:
Равновозможны 4 исхода эксперимента: орел-орел, орел-решка, решка-орел, решка-решка. Орел выпадает ровно один раз в двух случаях: орел-решка и решка-орел. Поэтому вероятность того, что орел выпадет ровно 1 раз, равна 2: 4= 0,5.
3.В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.
Решeние:
В чемпионате принимает участие
спортсменок из Китая. Тогда вероятность того, что спортсменка, выступающая первой, окажется из Китая, равна 5: 20 = 0,25
4.В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
Решeние:
В среднем из 1000 садовых насосов, поступивших в продажу, 1000 − 5 = 995 не подтекают. Значит, вероятность того, что один случайно выбранный для контроля насос не подтекает, равна 995: 1000 =0,995
5.Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.
Решeние:
По условию на каждые 100 + 8 = 108 сумок приходится 100 качественных сумок. Значит, вероятность того, что купленная сумка окажется качественной, равна 100: 108 =0,925925…= 0,93
6.В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 — из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Швеции
.
Решeние
:
Всего в соревнованиях принимает участие 4 + 7 + 9 + 5 = 25 спортсменов. Значит, вероятность того, что спортсмен, который выступает последним, окажется из Швеции, равна 9: 25 =0,36
7.Научная конференция проводится в 5 дней. Всего запланировано 75 докладов — первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?
Решeние:
За первые три дня будет прочитан 51 доклад, на последние два дня планируется 24 доклада. Поэтому на последний день запланировано 12 докладов. Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 12: 75 =0,16
8.Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?
Решeние:
На третий день запланировано
выступлений. Значит, вероятность того, что выступление представителя из России окажется запланированным на третий день конкурса, равна 18: 80 =0,225
9.На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России.
Решeние:
Всего в семинаре принимает участие 3 + 3 + 4 = 10 ученых, значит, вероятность того, что ученый, который выступает восьмым, окажется из России, равна 3:10 = 0,3.
10.Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?
Решeние:
В первом туре Руслан Орлов может сыграть с 26 − 1 = 25 бадминтонистами, из которых 10 − 1 = 9 из России. Значит, вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна 9: 25 = 0,36
11.В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.
Решение:
11: 55 = 0,2
12.На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая.
13.Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 30% этих стекол, вторая — 70%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 4%. Найдите вероятность того, что случайно купленное в магазине стекло, окажется бракованным.
Решение.
Переводим %% в дроби.
Событие А — «Куплены стекла первой фабрики». Р(А)=0,3
Событие В — «Куплены стекла второй фабрики». Р(В)=0,7
Событие Х — » Стекла бракованные».
Р(А и Х) = 0.3*0.03=0.009
Р(В и Х) = 0.7*0.04=0.028 По формуле полной вероятности:Р = 0.009+0.028 =
0.037
14.Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза. Решение:
0,52 * 0,3 = 0,156.
15.Вася, Петя, Коля и Лёша бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.
Решение: Случайный эксперимент — бросание жребия.
В этом эксперименте элементарным событием является участник, который выиграл жребий.
Перечислим возможные элементарные события:
(Вася), (Петя), (Коля), (Лёша).
Их будет будет 4, т.е. N=4. Жребий подразумевает, что все элементарные события равновозможны.
Событию A= {жребий выиграл Петя} благоприятствует только одно элементарное событие (Петя). Поэтому N(A)=1.
Тогда P(A)=0,25
Ответ:
0,25.
16.В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?
Решение:
Всего исходов -16.Из них благоприятных, т.е. с номером 2, будет 4. Значит, 4: 16=0,25
17.На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
= {вопрос на тему «Вписанная окружность»},
= {вопрос на тему «Параллелограмм»}.
События
и
несовместны, так как по условию в списке нет вопросов, относящихся к этим двум темам одновременно.
Событие
= {вопрос по одной из этих двух тем} является их объединением:
.
Применим формулу сложения вероятностей несовместных событий:
.
18.В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
Определим события
= {кофе закончится в первом автомате},
= {кофе закончится во втором автомате}.
По условию задачи
и
.
По формуле сложения вероятностей найдем вероятность события
и
= {кофе закончится хотя бы в одном из автоматов}:
.
Следовательно, вероятность противоположного события {кофе останется в обоих автоматах} равна
.
19.Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.
В этой задаче предполагается, что результат каждого следующего выстрела не зависит от предыдущих. Поэтому события «попал при первом выстреле», «попал при втором выстреле» и т.д. независимы.
Вероятность каждого попадания равна
. Значит, вероятность каждого промаха равна
. Воспользуемся формулой умножения вероятностей независимых событий. Получаем, что последовательность
= {попал, попал, попал, промахнулся, промахнулся} имеет вероятность
=
=
.
Ответ:
.
20.В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.
В этой задаче также предполагается независимость работы автоматов.
Найдем вероятность противоположного события
= {оба автомата неисправны}.
Для этого используем формулу умножения вероятностей независимых событий:
.
Значит, вероятность события
= {хотя бы один автомат исправен} равна
.
Ответ:
.
21.Помещение освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Решение:
Обе перегорят
(события независимые и пользуемся формулой произведения вероятностей) с вероятностью p1=0,3⋅0,3=0,09
Противоположное событие
(НЕ обе перегорят = ОДНА хотя бы не перегорит)
произойдет с вероятностью p=1-p1=1-0,09=0,91
ОТВЕТ: 0,91
22.Вероятность того, что новый электрический чайник прослужит больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна 0,89. Найдите вероятность того, что он прослужит меньше двух лет, но больше года
Решение.
Пусть A = «чайник прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух лет», тогда A + B = «чайник прослужит больше года».
События A и В совместные, вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Вероятность произведения этих событий, состоящего в том, что чайник выйдет из строя ровно через два года — строго в тот же день, час и секунду — равна нулю. Тогда:
P(A + B) = P(A) + P(B) − P(A·B) = P(A) + P(B),
откуда, используя данные из условия, получаем 0,97 = P(A) + 0,89.
Тем самым, для искомой вероятности имеем: P(A) = 0,97 − 0,89 = 0,08.
23.Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.
Решение:
Пусть в первом хозяйстве агрофирма закупает
яиц, в том числе,
яиц высшей категории, а во втором хозяйстве —
яиц, в том числе
яиц высшей категории. Тем самым, всего агроформа закупает
яиц, в том числе
яиц высшей категории. По условию, высшую категорию имеют 35% яиц, тогда:
Поэтому вероятность того, что купленное яйцо окажется из первого хозяйства равна
=0,75
24.На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?
25.Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?
26.Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся
.
Решение:
Джон
попадает в муху, если схватит пристрелянный револьвер и попадет из него, или если схватит непристрелянный револьвер и попадает из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,4·0,9 = 0,36 и 0,6·0,2 = 0,12. Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,36 + 0,12 = 0,48. Событие, состоящее в том, что Джон промахнется, противоположное. Его вероятность равна 1 − 0,48 = 0,52.
27.В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?
Решение:
Всего туристов пять, случайным образом из них выбирают двоих. Вероятность быть выбранным равна 2: 5 = 0,4. Ответ: 0,4.
28.Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.
Решeние:
Обозначим «1» ту сторону монеты, которая отвечает за выигрыш жребия «Физиком», другую сторону монеты обозначим «0». Тогда благоприятных комбинаций три: 110, 101, 011, а всего комбинаций 2
3
= 8: 000, 001, 010, 011, 100, 101, 110, 111. Тем самым, искомая вероятность равна:
29.Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»? Решeние: Сумма очков может быть равна 5 в четырех случаях: «3 + 2», «2 + 3», «1 + 4», «4 + 1». Ответ: 4.
30.В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР (в первый раз выпадает орёл, во второй — решка).
Решение:
Всего возможных исходов — четыре: орел-орел, орел-решка, решка-орел, решка-решка. Благоприятным является один: орел-решка. Следовательно, искомая вероятность равна 1: 4 = 0,25. Ответ: 0,25.
31.На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.
Решение:
Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (Д — Дания, Ш — Швеция, Н — Норвегия):
Д…Ш…Н…, …Д…Н…Ш…, …Ш…Н…Д…, …Ш…Д…Н…, …Н…Д…Ш…, …Н…Ш…Д…
Дания находится после Швеции и Норвегии в двух случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна
Ответ: 0,33.
32.При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?
Решение:
Можно решать задачу «по действиям», вычисляя вероятность уцелеть после ряда последовательных промахов:Р(1) = 0,6. Р(2) = Р(1)·0,4 = 0,24. Р(3) = Р(2)·0,4 = 0,096. Р(4) = Р(3)·0,4 = 0,0384; Р(5) = Р(4)·0,4 = 0,01536. Последняя вероятность меньше 0,02, поэтому достаточно пяти выстрелов по мишени.
33.Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4
.
Решение
: Команда может получить не меньше 4 очков в двух играх тремя способами: 3+1, 1+3, 3+3. Эти события несовместны, вероятность их суммы равна сумме их вероятностей. Каждое из этих событий представляет собой произведение двух независимых событий — результата в первой и во второй игре. Отсюда имеем:
34.В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.
Решение:
5000 – 2512 = 2488; 2488: 5000 = 0,4976 ≈0,498
35.На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.
Решение
: В самолете 12 + 18 = 30 мест удобны пассажиру В., а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30: 300 = 0,1.Ответ: 0,1.
36.На олимпиаде в вузе участников рассаживают по трём аудиториям. В первых двух по 120 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 250 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.
Решение:
Всего в запасную аудиторию направили 250 − 120 − 120 = 10 человек. Поэтому вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории, равна 10: 250 = 0,04. Ответ: 0,04.
37.В классе 26 человек, среди них два близнеца — Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.
Решение:
Пусть один из близнецов находится в некоторой группе. Вместе с ним в группе окажутся 12 человек из 25 оставшихся одноклассников. Вероятность того, что второй близнец окажется среди этих 12 человек, равна 12: 25 = 0,48.
38.В фирме такси в наличии 50 легковых автомобилей; 27 из них чёрные с жёлтыми надписями на бортах, остальные — жёлтые с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.
Решение
: 23:50=0,46
39.В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.
Решение:
На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист П. полетит первым рейсом вертолёта, равна:6:30=0,2
40.Вероятность того, что новый DVD-проигрыватель в течение года поступит в гарантийный ремонт, равна 0,045. В некотором городе из 1000 проданных DVD-проигрывателей в течение года в гарантийную мастерскую поступила 51 штука. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?
Решeние:
Частота (относительная частота) события «гарантийный ремонт» равна 51: 1000 = 0,051. Она отличается от предсказанной вероятности на 0,006.
41.При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше, чем 66,99 мм, или больше, чем 67,01 мм.
Решение.
По условию, диаметр подшипника будет лежать в пределах от 66,99 до 67,01 мм с вероятностью 0,965. Поэтому искомая вероятность противоположного события равна 1 − 0,965 = 0,035.
42.Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач.
Решение:
Рассмотрим события A = «учащийся решит 11 задач» и В = «учащийся решит больше 11 задач». Их сумма — событие A + B = «учащийся решит больше 10 задач». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: P(A + B) = P(A) + P(B). Тогда, используя данные задачи, получаем: 0,74 = P(A) + 0,67, откуда P(A) = 0,74 − 0,67 = 0,07.Ответ: 0,07.
43.Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание. Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Решeние:
Для того, чтобы поступить хоть куда-нибудь, З. нужно сдать и русский, и математику как минимум на 70 баллов, а помимо этого еще сдать иностранный язык или обществознание не менее, чем на 70 баллов. Пусть
A
,
B
,
C
и
D
— это события, в которых З. сдает соответственно математику, русский, иностранный и обществознание не менее, чем на 70 баллов. Тогда поскольку
Для вероятности поступления имеем:
44.На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых.
Решение
: Пусть завод произвел
тарелок. В продажу поступят все качественные тарелки и 20% невыявленных дефектных тарелок:
тарелок. Поскольку качественных из них
, вероятность купить качественную тарелку равна 0,9п:0,92п=0,978 Ответ: 0,978.
45.В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).
Решение
: Вероятность произведения независимых событий равна произведению вероятностей этих событий. Поэтому вероятность того, что все три продавца заняты равна
46.По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.
Решение:
Вероятность того, что первый магазин не доставит товар равна 1 − 0,9 = 0,1. Вероятность того, что второй магазин не доставит товар равна 1 − 0,8 = 0,2. Поскольку эти события независимы, вероятность их произведения (оба магазина не доставят товар) равна произведению вероятностей этих событий: 0,1 · 0,2 = 0,02
47.Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.
Решeние:
Рассмотрим события A = «в автобусе меньше 15 пассажиров» и В = «в автобусе от 15 до 19 пассажиров». Их сумма — событие A + B = «в автобусе меньше 20 пассажиров». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: P(A + B) = P(A) + P(B). Тогда, используя данные задачи, получаем: 0,94 = 0,56 + P(В), откуда P(В) = 0,94 − 0,56 = 0,38. Ответ: 0,38.
48.Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.
Решение.
Требуется найти вероятность произведения трех событий: «Статор» начинает первую игру, не начинает вторую игру, начинает третью игру. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда находим: 0,5·0,5·0,5 = 0,125. Ответ: 0,125.
49.
В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.
Решение.
Для погоды на 4, 5 и 6 июля есть 4 варианта: ХХО, ХОО, ОХО, ООО (здесь Х — хорошая, О — отличная погода). Найдем вероятности наступления такой погоды: P(XXO) = 0,8·0,8·0,2 = 0,128; P(XOO) = 0,8·0,2·0,8 = 0,128; P(OXO) = 0,2·0,2·0,2 = 0,008; P(OOO) = 0,2·0,8·0,8 = 0,128. Указанные события несовместные, вероятность их сумы равна сумме вероятностей этих событий: P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392.
50.Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется
положительным
. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
Решение
.
Анализ пациента может быть положительным по двум причинам: А) пациент болеет гепатитом, его анализ верен; B) пациент не болеет гепатитом, его анализ ложен. Это несовместные события, вероятность их суммы равна сумме вероятностей этих событий. Имеем: р(А)=0,9 0,05=0,045; р(В)=0,01 0,95=0,0095; р(А+В)=Р(А)+р(В)=0,045+0,0095=0,0545.
51.В кармане у Миши было четыре конфеты — «Грильяж», «Белочка», «Коровка» и «Ласточка», а так же ключи от квартиры. Вынимая ключи, Миша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Грильяж».
52.Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 10, но не дойдя до отметки 1 час. Решение: 3: 12=0,25
53.Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
Решeние:
Вероятность того, что батарейка исправна, равна 0,94. Вероятность произведения независимых событий (обе батарейки окажутся исправными) равна произведению вероятностей этих событий: 0,94·0,94 = 0,8836.Ответ: 0,8836.
54.Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля.
Решение.
Ситуация, при которой батарейка будет забракована, может сложиться в результате событий: A = батарейка действительно неисправна и забракована справедливо или В = батарейка исправна, но по ошибке забракована. Это несовместные события, вероятность их суммы равна сумме вероятностей эти событий. Имеем:
55.На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу
.
Решение.
На каждой из четырех отмеченных развилок паук с вероятностью 0,5 может выбрать или путь, ведущий к выходу D, или другой путь. Это независимые события, вероятность их произведения (паук дойдет до выхода D) равна произведению вероятностей этих событий. Поэтому вероятность прийти к выходу D равна (0,5)
4
= 0,0625.
На заводе керамической плитки 5%
произведённых плиток имеют дефект. При контроле качества продукции обнаруживается лишь 40%
дефектных плиток. Остальные плитки отправляются на продажу. Найдите вероятность того, что выбранная случайным образом при покупке плитка не будет иметь дефектов. Ответ округлите до сотых.
Показать решение
Решение
При контроле качества продукции выявляется 40%
дефектных плиток, которые составляют 5%
от произведённых плиток, и они не поступают в продажу. Значит, не поступает в продажу 0,4 · 5% = 2%
от произведённых плиток. Остальная часть произведённых плиток — 100% − 2% = 98%
поступает в продажу.
Не имеет дефектов 100% − 95%
произведённых плиток. Вероятность того, что купленная плитка не имеет дефекта, равна 95% : 98%
= frac{95}{98}approx 0,97
Ответ
Условие
Вероятность того, что аккумулятор не заряжен, равна 0,15.
Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.
Показать решение
Решение
Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85.
Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A
и B
события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85.
Событие «оба аккумулятора заряжены» — это пересечение событий A cap B,
его вероятность равна P(A cap B) =
P(A)cdot P(B) =
0,85cdot 0,85 =
0,7225.
Ответ
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
Вероятность того, что новая стиральная машина в течение года поступит в гарантийный ремонт, равна 0,065
. В некотором городе в течение года было продано 1200
стиральных машин, из которых 72
штуки было передано в гарантийную мастерскую. Определите, насколько отличается относительная частота наступления события «гарантийный ремонт» от его вероятности в этом городе?
Показать решение
Решение
Частота события «стиральная машина в течение года поступит в гарантийный ремонт» равна frac{72}{1200} = 0,06.
От вероятности она отличается на 0,065-0,06=0,005.
Ответ
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
Вероятность того, что ручка бракованная, равна 0,05
. Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.
Показать решение
Решение
Вероятность того, что ручка исправная, равна 1-0,05 = 0,95.
Найдём вероятность события «обе ручки исправны». Обозначим через A
и B
события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95.
Событие «обе ручки исправны» — это пересечение событий Acap B,
его вероятность равна P(Acap B) =
P(A)cdot P(B) =
0,95cdot 0,95 =
0,9025.
Ответ
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.
Показать решение
Решение
Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).
Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.
Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4
раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна frac12cdotfrac12cdotfrac12cdotfrac12=
0,5^4=
0,0625.
Ответ
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
В секции 16
спортсменок, среди них две подруги — Оля и Маша. Спортсменок случайным образом распределяют по 4
равным группам. Найдите вероятность того, что Оля и Маша попадут в одну группу.
М.: 2016. — 64 с.
Рабочая тетрадь по математике серии «ЕГЭ 2016.
Математика» ориентирована на подготовку учащихся старшей школы к успешной сдаче
единого государственного экзамена по математике в 2016 году по базовому и
профильному уровням. В рабочей тетради представлены задачи по одной позиции
контрольных измерительных материалов ЕГЭ-2016. На различных этапах обучения
пособие поможет обеспечить уровневый подход к организации повторения,
осуществить контроль и самоконтроль знаний по теме «Теория вероятностей».
Рабочая тетрадь ориентирована на один учебный год, однако при необходимости
позволит в кратчайшие сроки восполнить пробелы в знаниях выпускника. Тетрадь
предназначена для учащихся старшей школы, учителей математики, родителей.
Формат:
pdf
Размер:
3,1
Мб
Смотреть, скачать:
drive.google
СОДЕРЖАНИЕ
От редактора серии 3
Введение 4
Диагностическая работа 1 6
Решения задач диагностической работы 1 10
Тренировочная работа 1 (к задаче Д1.1) 22
Тренировочная работа 2 (к задачам Д1.2, Д.1.4) 24
Тренировочная работа 3 (к задачам Д1.3, Д1.5) 26
Тренировочная работа 4 (к задачам Д1.1-Д1.5) 28
Тренировочная работа 5 (к задачам Д1.6-Д1.9) 30
Тренировочная работа 6 (к задачам Д1.6-Д1.9) 32
Тренировочная работа 7 (к задачам Д1.6-Д1.9) 34
Тренировочная работа 8 (к задачам Д1.10-Д1.14) 36
Тренировочная работа 9 (к задачам Д1.10-Д1.14) 39
Тренировочная работа 10 (к задачам Д1.10-Д1.14) 41
Тренировочная работа 11 (к задачам Д1.15-Д.18) 43
Тренировочная работа 12 (к задачам Д1.15-Д.18) 45
Диагностическая работа 2 47
Диагностическая работа 3 51
Диагностическая работа 4 54
Справочные материалы 57
Ответы 58
Настоящее пособие предназначено для подготовки к выполнению задания по теории
вероятностей единого государственного экзамена (задача 4 профильного уровня и
задача 10 базового уровня в варианте 2016 года).
Пособие состоит из диагностической работы Д1 с разбором решений, десяти
тренировочных работ и трех дополнительных диагностических работ Д2-Д4,
предназначенных для промежуточного контроля. В конце сборника даны ответы ко
всем задачам.
Благодаря тому что задания первой части ЕГЭ по математике формируются с
использованием открытого банка, задачи по вероятности также не будут сюрпризом
для участников экзамена.
Теория вероятностей — один из наиболее важных прикладных разделов математики.
Многие явления окружающего нас мира поддаются описанию только с помощью теории
вероятностей. Ее преподают в школах многих стран, а в России она была возвращена
в школу стандартом 2004 года и пока остается новым разделом.
Учащиеся и учителя еще испытывают определенные трудности при изучении теории
вероятностей и статистики, связанные с отсутствием глубоких традиций
преподавания и малочисленностью учебных материалов. Поэтому в 2016 году в ЕГЭ
войдут только простейшие задачи по теории вероятностей.
Приведенные к настоящему моменту в открытом банке задач ЕГЭ по математике (mathege.ru), решение которых основано на одной лишь формуле, представляющей собой классическое определение вероятности.
Понять формулу проще всего на примерах.
Пример 1.
В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?
Комментарий.
В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат — исход. Нужно заметить, что на результат можно смотреть по-разному. «Мы вытащили какой-то шар» — тоже результат. «Мы вытащили синий шар» — результат. «Мы вытащили именно вот этот шар из всех возможных шаров» — такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.
Решение.
Теперь вычислим вероятность выбора синего шара.
Событие А: «выбранный шар оказался синего цвета»
Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, — то есть, количество синих шаров)
P(A)=3/12=1/4=0,25
Ответ: 0,25
Посчитаем для той же задачи вероятность выбора красного шара.
Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75
Вероятность любого события всегда лежит в пределах от 0 до 1.
Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
Итак,
При этом вероятность равна нулю у событий, которые не могут произойти — невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» — для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)
Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы , ), бракованные и качественные сумки или садовые насосы (прототипы , ) – принцип остается тем же.
Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. ( , )
Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.
Пример 2.
Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?
Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4
Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы , , , ):
Пример 3.
В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.
Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
Благоприятные исходы – французы. 8 человек.
Искомая вероятность: 8/16=1/2=0,5
Ответ: 0,5
Немного отличается прототип .
Остались задачи про монеты () и игральные кости (), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.
Приведем несколько примеров на бросание монеты или кубика.
Пример 4.
Когда подбрасываем монету, какова вероятность выпадения решки?
Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро)
Благоприятный исход – решка, 1.
Вероятность 1/2=0,5
Ответ: 0,5.
Пример 5.
А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
1) PP – оба раза выпала решка
2) PO – первый раз решка, второй раз орел
3) OP – первый раз орел, второй раз решка
4) OO – оба раза выпал орел
Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
Вероятность: 1/4=0,25
Ответ: 0,25
Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
Вероятность выпадения одной решки: 2/4=0,5
В таких задачах может пригодиться ещё одна формула.
Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·…·2=2 N .
Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
Общее число элементарных исходов: 2 5 =32.
Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
Вероятность: 1/32=0,03125
То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.
Пример 6.
Бросаем игральную кость. Какова вероятность, что выпадет четное число?
Всего исходов: 6, по числу граней.
Благоприятных: 3 исхода. (2, 4, 6)
Вероятность: 3/6=0,5
Пример 7.
Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)
Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
(6 на первом и 4 на втором)
(4 на первом и 6 на втором)
(5 на первом и 5 на втором)
Итого, 3 варианта.
Искомая вероятность: 3/36=1/12=0,08
Ответ: 0,08
Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».
События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).
Зачем нужна теория вероятности
Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.
Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.
В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.
Основные понятия теории вероятности
Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.
Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.
Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.
События А и В называется несовместными, если они не могут произойти одновременно.
Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .
Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .
Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.
Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.
Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .
Ответ получаем по формуле .
Пример задачи из ЕГЭ по математике по определению вероятности
На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?
Решение.
Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:
Независимые, противоположные и произвольные события
Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.
События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.
Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .
Теоремы сложения и умножения вероятностей, формулы
Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .
Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .
Последние 2 утверждения называются теоремами сложения и умножения вероятностей.
Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.
Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».
В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .
Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .
В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам
В нашем случае .
И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:
В нашем случае .
Примеры решения задач из ЕГЭ по математике на определение вероятности
Задача 1. Из сборника под ред. Ященко.
На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.
.
Ответ: 0,3.
Задача 2. Из сборника под ред. Ященко.
В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.
Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:
Ответ: 0,98.
Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.
Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».
Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:
Ответ: 0,06.
На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:
Ответ: 0,35.
Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.
Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.
Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .
Приведенные к настоящему моменту в открытом банке задач ЕГЭ по математике (mathege.ru), решение которых основано на одной лишь формуле, представляющей собой классическое определение вероятности.
Понять формулу проще всего на примерах.
Пример 1.
В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?
Комментарий.
В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат — исход. Нужно заметить, что на результат можно смотреть по-разному. «Мы вытащили какой-то шар» — тоже результат. «Мы вытащили синий шар» — результат. «Мы вытащили именно вот этот шар из всех возможных шаров» — такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.
Решение.
Теперь вычислим вероятность выбора синего шара.
Событие А: «выбранный шар оказался синего цвета»
Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, — то есть, количество синих шаров)
P(A)=3/12=1/4=0,25
Ответ: 0,25
Посчитаем для той же задачи вероятность выбора красного шара.
Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75
Вероятность любого события всегда лежит в пределах от 0 до 1.
Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
Итак,
При этом вероятность равна нулю у событий, которые не могут произойти — невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» — для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)
Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы , ), бракованные и качественные сумки или садовые насосы (прототипы , ) – принцип остается тем же.
Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. ( , )
Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.
Пример 2.
Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?
Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4
Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы , , , ):
Пример 3.
В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.
Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
Благоприятные исходы – французы. 8 человек.
Искомая вероятность: 8/16=1/2=0,5
Ответ: 0,5
Немного отличается прототип .
Остались задачи про монеты () и игральные кости (), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.
Приведем несколько примеров на бросание монеты или кубика.
Пример 4.
Когда подбрасываем монету, какова вероятность выпадения решки?
Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро)
Благоприятный исход – решка, 1.
Вероятность 1/2=0,5
Ответ: 0,5.
Пример 5.
А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
1) PP – оба раза выпала решка
2) PO – первый раз решка, второй раз орел
3) OP – первый раз орел, второй раз решка
4) OO – оба раза выпал орел
Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
Вероятность: 1/4=0,25
Ответ: 0,25
Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
Вероятность выпадения одной решки: 2/4=0,5
В таких задачах может пригодиться ещё одна формула.
Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·…·2=2 N .
Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
Общее число элементарных исходов: 2 5 =32.
Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
Вероятность: 1/32=0,03125
То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.
Пример 6.
Бросаем игральную кость. Какова вероятность, что выпадет четное число?
Всего исходов: 6, по числу граней.
Благоприятных: 3 исхода. (2, 4, 6)
Вероятность: 3/6=0,5
Пример 7.
Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)
Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
(6 на первом и 4 на втором)
(4 на первом и 6 на втором)
(5 на первом и 5 на втором)
Итого, 3 варианта.
Искомая вероятность: 3/36=1/12=0,08
Ответ: 0,08
Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».
Задачи по теории вероятностей с решениями
1. Комбинаторика
Задача 1
.
В группе 30 студентов. Необходимо выбрать старосту, заместителя старосты и профорга. Сколько существует способов это сделать?
Решение.
Старостой может быть выбран любой из 30 студентов, заместителем — любой из оставшихся 29, а профоргом – любой из оставшихся 28 студентов, т. е. n1=30, n2=29, n3=28. По правилу умножения общее число N способов выбора старосты, его заместителя и профорга равно N=n1´n2´n3=30´29´28=24360.
Задача 2
.
Два почтальона должны разнести 10 писем по 10 адресам. Сколькими способами они могут распределить работу?
Решение.
Первое письмо имеет n1=2 альтернативы – либо его относит к адресату первый почтальон, либо второй. Для второго письма также есть n2=2 альтернативы и т. д., т. е. n1=n2=…=n10=2. Следовательно, в силу правила умножения общее число способов распределений писем между двумя почтальонами равно
Задача 3
.
В ящике 100 деталей, из них 30 – деталей 1-го сорта, 50 – 2-го, остальные – 3-го. Сколько существует способов извлечения из ящика одной детали 1-го или 2-го сорта?
Решение.
Деталь 1-го сорта может быть извлечена n1=30 способами, 2-го сорта – n2=50 способами. По правилу суммы существует N=n1+n2=30+50=80 способов извлечения одной детали 1-го или 2-го сорта.
Задача 5
.
Порядок выступления 7 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?
Решение.
Каждый вариант жеребьевки отличается только порядком участников конкурса, т. е. является перестановкой из 7 элементов. Их число равно
Задача 6
.
В конкурсе по 5 номинациям участвуют 10 кинофильмов. Сколько существует вариантов распределения призов, если по всем номинациям установлены различные
премии?
Решение.
Каждый из вариантов распределения призов представляет собой комбинацию 5 фильмов из 10, отличающуюся от других комбинаций, как составом, так и их порядком. Так как каждый фильм может получить призы как по одной, так и по нескольким номинациям, то одни и те же фильмы могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 10 элементов по 5:
Задача 7
.
В шахматном турнире участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?
Решение.
Каждая партия играется двумя участниками из 16 и отличается от других только составом пар участников, т. е. представляет собой сочетания из 16 элементов по 2. Их число равно
Задача 8
.
В условиях задачи 6 определить, сколько существует вариантов распределения призов, если по всем номинациям установлены одинаковые
призы?
Решение.
Если по каждой номинации установлены одинаковые призы, то порядок фильмов в комбинации 5 призов значения не имеет, и число вариантов представляет собой число сочетаний с повторениями из 10 элементов по 5, определяемое по формуле
Задача 9.
Садовник должен в течении трех дней посадить 6 деревьев. Сколькими способами он может распределить по дням работу, если будет сажать не менее одного дерева в день?
Решение.
Предположим, что садовник сажает деревья в ряд, и может принимать различные решения относительно того, после какого по счету дерева остановиться в первый день и после какого – во второй. Таким образом, можно представить себе, что деревья разделены двумя перегородками, каждая из которых может стоять на одном из 5 мест (между деревьями). Перегородки должны стоять там по одной, поскольку иначе в какой-то день не будет посажено ни одного дерева. Таким образом, надо выбрать 2 элемента из 5 (без повторений). Следовательно, число способов .
Задача 10.
Сколько существует четырехзначных чисел (возможно, начинающихся с нуля), сумма цифр которых равна 5?
Решение.
Представим число 5 в виде суммы последовательных единиц, разделенных на группы перегородками (каждая группа в сумме образует очередную цифру числа). Понятно, что таких перегородок понадобится 3. Мест для перегородок имеется 6 (до всех единиц, между ними и после). Каждое место может занимать одна или несколько перегородок (в последнем случае между ними нет единиц, и соответствующая сумма равна нулю). Рассмотрим эти места в качестве элементов множества. Таким образом, надо выбрать 3 элемента из 6 (с повторениями). Следовательно, искомое количество чисел
Задача 11
.
Сколькими способами можно разбить группу из 25 студентов на три подгруппы А, В и С по 6, 9 и 10 человек соответственно?
Решение.
Здесь n=25, k=3, n1=6, n2=9, n3=10..gif» width=»160″ height=»41″>
Задача 1
.
В ящике 5 апельсинов и 4 яблока. Наудачу выбираются 3 фрукта. Какова вероятность, что все три фрукта – апельсины?
Решение
. Элементарными исходами здесь являются наборы, включающие 3 фрукта. Поскольку порядок фруктов безразличен, будем считать их выбор неупорядоченным (и бесповторным)..gif» width=»21″ height=»25 src=»>. Число благоприятствующих исходов равно числу способов выбора 3 апельсинов из имеющихся 5, т. е..gif» width=»161 height=83″ height=»83″>.
Задача 2
.
Преподаватель предлагает каждому из трех студентов задумать любое число от 1 до 10. Считая, что выбор каждым из студентов любого числа из заданных равновозможен, найти вероятность того, что у кого-то из них задуманные числа совпадут.
Решение.
Вначале подсчитаем общее количество исходов. Первый из студентов выбирает одно из 10 чисел и имеет n1=10 возможностей, второй тоже имеет n2=10 возможностей, наконец, третий также имеет n3=10 возможностей. В силу правила умножения общее число способов равно: n= n1´n2´n3=103 = 1000, т. е. все пространство содержит 1000 элементарных исходов. Для вычисления вероятности события A удобно перейти к противоположному событию, т. е. подсчитать количество тех случаев, когда все три студента задумывают разные числа. Первый из них по-прежнему имеет m1=10 способов выбора числа. Второй студент имеет теперь лишь m2=9 возможностей, поскольку ему приходится заботиться о том, чтобы его число не совпало с задуманным числом первого студента. Третий студент еще более ограничен в выборе — у него всего m3=8 возможностей. Поэтому общее число комбинаций задуманных чисел, в которых нет совпадений, равно m=10×9×8=720. Случаев, в которых есть совпадения, остается 280. Следовательно, искомая вероятность равна Р=280/1000= 0,28.
Задача 3
.
Найти вероятность того, что в 8-значном числе ровно 4 цифры совпадают, а остальные различны.
Решение
. Событие А={восьмизначное число содержит 4 одинаковые цифры}. Из условия задачи следует, что в числе пять различных цифр, одна из них повторяется. Число способов её выбора равно числу способов выбора одной цифры из 10 цифр..gif» width=»21″ height=»25 src=»> . Тогда число благоприятствующих исходов . Всего же способов составления 8-значных чисел равно |W|=108. Искомая вероятность равна
Задача 4
.
Шесть клиентов случайным образом обращаются в 5 фирм. Найти вероятность того, что хотя бы в одну фирму никто не обратится.
Решение.
Рассмотрим противоположное событие https://pandia.ru/text/78/307/images/image020_10.gif» width=»195″ height=»41″>. Общее количество способов распределить 6 клиентов по 5 фирмам . Отсюда . Следовательно, .
Задача 5
.
Пусть в урне имеется N шаров, из них М белых и N–M черных. Из урны извлекается n шаров. Найти вероятность того, что среди них окажется ровно m белых шаров.
Решение.
Так как порядок элементов здесь несущественен, то число всех возможных наборов объема n из N элементов равно числу сочетаний m белых шаров, n–m черных», равно , и, следовательно, искомая вероятность равна Р(А)=https://pandia.ru/text/78/307/images/image031_2.gif» width=»167″ height=»44″>.
Задача 7
(задача о встрече)
. Два лица А и В условились встретиться в определенном месте между 12 и 13 часами. Пришедший первым ждет другого в течении 20 минут, после чего уходит. Чему равна вероятность встречи лиц А и В, если приход каждого из них может произойти наудачу в течении указанного часа и моменты прихода независимы?
Решение.
Обозначим момент прихода лица А через х и лица В – через у. Для того, чтобы встреча произошла, необходимо и достаточно, чтобы ôх-уô£20. Изобразим х и у как координаты на плоскости, в качестве единицы масштаба выберем минуту. Всевозможные исходы представляются точками квадрата со стороной 60, а благоприятствующие встрече располагаются в заштрихованной области. Искомая вероятность равна отношению площади заштрихованной фигуры (рис. 2.1) к площади всего квадрата: P(A) = (602–402)/602 = 5/9.
3. Основные формулы теории вероятностей
Задача 1
. В ящике 10 красных и 5 синих пуговиц. Вынимаются наудачу две пуговицы. Какова вероятность, что пуговицы будут одноцветными?
Решение
. Событие A={вынуты пуговицы одного цвета} можно представить в виде суммы , где события и означают выбор пуговиц красного и синего цвета соответственно. Вероятность вытащить две красные пуговицы равна, а вероятность вытащить две синие пуговицы https://pandia.ru/text/78/307/images/image034_2.gif» width=»19 height=23″ height=»23″>.gif» width=»249″ height=»83″>
Задача 2
. Среди сотрудников фирмы 28% знают английский язык , 30% – немецкий, 42% – французский; английский и немецкий – 8%, английский и французский – 10%, немецкий и французский – 5%, все три языка – 3%. Найти вероятность того, что случайно выбранный сотрудник фирмы: а) знает английский или немецкий; б) знает английский, немецкий или французский; в) не знает ни один из перечисленных языков.
Решение.
Обозначим через A, B и С события, заключающиеся в том, что случайно выбранный сотрудник фирмы владеет английским, немецким или французским соответственно. Очевидно, доли сотрудников фирмы, владеющих теми или иными языками, определяют вероятности этих событий. Получаем:
а) P(AÈB)=P(A)+P(B) -P(AB)=0,28+0,3-0,08=0,5;
б) P(AÈBÈC)=P(A)+P(B)+P(C)-(P(AB)+P(AC)+P(BC))+P(ABC)=0,28+0,3+0,42-
-(0,08+0,1+0,05)+0,03=0,8;
в) 1-P(AÈBÈC)=0,2.
Задача 3
.
В семье – двое детей. Какова вероятность, что старший ребенок – мальчик, если известно, что в семье есть дети обоего пола?
Решение.
Пусть А={старший ребенок – мальчик}, B={в семье есть дети обоего пола}. Будем считать, что рождение мальчика и рождение девочки – равновероятные события. Если рождение мальчика обозначить буквой М, а рождение девочки – Д, то пространство всех элементарных исходов состоит из четырех пар: . В этом пространстве лишь два исхода (МД и ДМ) отвечают событию B. Событие AB означает, что в семье есть дети обоего пола. Старший ребенок – мальчик, следовательно, второй (младший) ребенок – девочка. Этому событию AB отвечает один исход – МД. Таким образом, |AB|=1, |B|=2 и
Задача 4
.
Мастер, имея 10 деталей, из которых 3 – нестандартных, проверяет детали одну за другой, пока ему не попадется стандартная. Какова вероятность, что он проверит ровно две детали?
Решение.
Событие А={мастер проверил ровно две детали} означает, что при такой проверке первая деталь оказалась нестандартной, а вторая – стандартная. Значит, , где ={ первая деталь оказалась нестандартной } и ={вторая деталь – стандартная}. Очевидно, что вероятность события А1 равна кроме того, , так как перед взятием второй детали у мастера осталось 9 деталей, из которых только 2 нестандартные и 7 стандартных. По теореме умножения
Задача 5
.
В одном ящике 3 белых и 5 черных шаров, в другом ящике – 6 белых и 4 черных шара. Найти вероятность того, что хотя бы из одного ящика будет вынут белый шар, если из каждого ящика вынуто по одному шару.
Решение
. Событие A={хотя бы из одного ящика вынут белый шар} можно представить в виде суммы , где события и означают появление белого шара из первого и второго ящика соответственно..gif» width=»91″ height=»23″>..gif» width=»20″ height=»23 src=»>.gif» width=»480″ height=»23″>.
Задача 6
.
Три экзаменатора принимают экзамен по некоторому предмету у группы в 30 человек, причем первый опрашивает 6 студентов, второй — 3 студентов, а третий — 21 студента (выбор студентов производится случайным образом из списка). Отношение трех экзаменаторов к слабо подготовившимся различное: шансы таких студентов сдать экзамен у первого преподавателя равны 40%, у второго — только 10%, у третьего — 70%. Найти вероятность того, что слабо подготовившийся студент сдаст экзамен.
Решение.
Обозначим через гипотезы, состоящие в том, что слабо подготовившийся студент отвечал первому, второму и третьему экзаменатору соответственно. По условию задачи
,
,
.
Пусть событие A={слабо подготовившийся студент сдал экзамен}. Тогда снова в силу условия задачи
,
,
.
По формуле полной вероятности получаем:
Задача 7
. Фирма имеет три источника поставки комплектующих – фирмы А, B, С. На долю фирмы А приходится 50% общего объема поставок, В – 30% и С – 20%. Из практики известно, что среди поставляемых фирмой А деталей 10% бракованных, фирмой В – 5% и фирмой С – 6%. Какова вероятность, что взятая наугад деталь окажется годной?
Решение.
Пусть событие G – появление годной детали. Вероятности гипотез о том, что деталь поставлена фирмами А, B, С, равны сответственно Р(А)=0,5, Р(В)=0,3, Р(С)=0,2. Условные вероятности появления при этом годной детали равны Р(G|A)=0,9, P(G|B)=0,95, P(G|C)=0,94 (как вероятности противоположных событий к появлению бракованной). По формуле полной вероятности получаем:
P(G)=0,5×0,9+0,3×0,95+0,2×0,94=0,923.
Задача 8
(см. задачу 6). Пусть известно, что студент не сдал экзамен, т. е. получил оценку «неудовлетворительно». Кому из трех преподавателей вероятнее всего он отвечал?
Решение.
Вероятность получить «неуд» равна . Требуется вычислить условные вероятности. По формулам Байеса получаем:
https://pandia.ru/text/78/307/images/image059_0.gif» width=»183″ height=»44 src=»>, .
Отсюда следует, что, вероятнее всего, слабо подготовившийся студент сдавал экзамен третьему экзаменатору.
4. Повторные независимые испытания. Теорема Бернулли
Задача 1
.
Игральная кость брошена 6 раз. Найти вероятность того, что ровно 3 раза выпадет «шестерка».
Решение.
Шестикратное бросание кости можно рассматривать как последовательность независимых испытаний с вероятностью успеха («шестерки»), равной 1/6, и вероятностью неудачи — 5/6. Искомую вероятность вычисляем по формуле .
Задача 2
. Монета бросается 6 раз. Найти вероятность того, что герб выпадет не более, чем 2 раза.
Решение.
Искомая вероятность равна сумме вероятностей трех событий, состоящих в том, что герб не выпадет ни разу, либо один раз, либо два раза:
Р(А) = Р6(0) + Р6(1) + Р6(2) = https://pandia.ru/text/78/307/images/image063.gif» width=»445 height=24″ height=»24″>.
Задача 4
.
Монета подбрасывается 3 раза. Найти наиболее вероятное число успехов (выпадений герба).
Решение.
Возможными значениями для числа успехов в трех рассматриваемых испытаниях являются m = 0, 1, 2 или 3. Пусть Am — событие, состоящее в том, что при трех подбрасываниях монеты герб появляется m раз. По формуле Бернулли легко найти вероятности событий Am (см. таблицу):
Из этой таблицы видно, что наиболее вероятными значениями являются числа 1 и 2 (их вероятности равны 3/8). Этот же результат можно получить и из теоремы 2. Действительно, n=3, p=1/2, q=1/2. Тогда
, т. е. .
Задача 5.
В результате каждого визита страхового агента договор заключается с вероятностью 0,1. Найти наивероятнейшее число заключенных договоров после 25 визитов.
Решение.
Имеем n=10, p=0,1, q=0,9. Неравенство для наиболее вероятного числа успехов принимает вид: 25×0,1–0,9£m*£25×0,1+0,1 или 1,6£m*£2,6. У этого неравенства только одно целое решение, а именно, m*=2.
Задача 6
. Известно, что процент брака для некоторой детали равен 0,5%. Контролер проверяет 1000 деталей. Какова вероятность обнаружить ровно три бракованные детали? Какова вероятность обнаружить не меньше трех бракованных деталей?
Решение.
Имеем 1000 испытаний Бернулли с вероятностью «успеха» р=0,005. Применяя пуассоновское приближение с λ=np=5, получаем
2) P1000(m³3)=1-P1000(m
и Р1000(3)»0,14; Р1000(m³3)»0,875.
Задача 7
.
Вероятность покупки при посещении клиентом магазина составляет р=0,75. Найти вероятность того, что при 100 посещениях клиент совершит покупку ровно 80 раз.
Решение
. В данном случае n=100, m=80, p=0,75, q=0,25. Находим , и определяем j(x)=0,2036, тогда искомая вероятность равна Р100(80)=
.
Задача 8.
Страховая компания заключила 40000 договоров. Вероятность страхового случая по каждому из них в течение года составляет 2%. Найти вероятность, что таких случаев будет не более 870.
Решение.
По условию задачи n=40000, p=0,02. Находим np=800,. Для вычисления Р(m£870) воспользуемся интегральной теоремой Муавра-Лапласа:
Р(0.
Находим по таблице значений функции Лапласа:
Р(0
Задача 9
.
Вероятность появления события в каждом из 400 независимых испытаний равна 0,8. Найти такое положительное число e, чтобы с вероятностью 0,99 абсолютная величина отклонения относительной частоты появления события от его вероятности не превышала e.
Решение.
По условию задачи p=0,8, n=400. Используем следствие из интегральной теоремы Муавра-Лапласа: . Следовательно,
..gif» width=»587″ height=»41″>
5.
Дискретные случайные величины
Задача 1
.
В связке из 3 ключей только один ключ подходит к двери. Ключи перебирают до тех пор, пока не отыщется подходящий ключ. Построить закон распределения для случайной величины x – числа опробованных ключей.
Решение.
Число опробованных ключей может равняться 1, 2 или 3. Если испытали только один ключ, это означает, что этот первый ключ сразу подошел к двери, а вероятность такого события равна 1/3. Итак, Далее, если опробованных ключей было 2, т. е. x=2, это значит, что первый ключ не подошел, а второй – подошел. Вероятность этого события равна 2/3×1/2=1/3..gif» width=»100″ height=»21″> В результате получается следующий ряд распределения:
Задача 2
.
Построить функцию распределения Fx(x) для случайной величины x из задачи 1.
Решение.
Случайная величина x имеет три значения 1, 2, 3, которые делят всю числовую ось на четыре промежутка: . Если x
Если 1£x
Если 2£x
И, наконец, в случае x³3 неравенство x£x выполняется для всех значений случайной величины x, поэтому P(x
Итак, мы получили следующую функцию:
Задача 3
.
Совместный закон распределения случайных величин x и h задан c помощью таблицы
Вычислить частные законы распределения составляющих величин x и h. Определить, зависимы ли они..gif» width=»423″ height=»23 src=»>;
https://pandia.ru/text/78/307/images/image086.gif» width=»376″ height=»23 src=»>.
Аналогично получается частное распределение для h:
https://pandia.ru/text/78/307/images/image088.gif» width=»229″ height=»23 src=»>.
Полученные вероятности можно записать в ту же таблицу напротив соответствующих значений случайных величин:
Теперь ответим на вопрос о независимости случайных величин x и h..gif» width=»108″ height=»25 src=»> в этой клетке. Например, в клетке для значений x=-1 и h=1 стоит вероятность 1/16, а произведение соответствующих частных вероятностей 1/4×1/4 равно 1/16, т. е. совпадает с совместной вероятностью. Это условие так же проверяется в оставшихся пяти клетках, и оно оказывается верным во всех. Следовательно, случайные величины x и h независимы.
Заметим, что если бы наше условие нарушалось хотя бы в одной клетке, то величины следовало бы признать зависимыми.
Для вычисления вероятности отметим клетки, для которых выполнено условие https://pandia.ru/text/78/307/images/image092.gif» width=»574″ height=»23 src=»>
Задача 4
.
Пусть случайная величина ξ имеет следующий закон распределения:
Вычислить математическое ожидание Mx, дисперсию Dx и среднеквадратическое отклонение s.
Решение
. По определению математическое ожидание x равно
Среднее квадратическое отклонение https://pandia.ru/text/78/307/images/image097.gif» width=»51″ height=»21″>.
Решение.
Воспользуемся формулой . А именно, в каждой клетке таблицы выполняем умножение соответствующих значений и , результат умножаем на вероятность pij, и все это суммируем по всем клеткам таблицы. В итоге получаем:
Задача 6
.
Для пары случайных величин из задачи 3 вычислить ковариацию cov(x, h).
Решение.
В предыдущей задаче уже было вычислено математическое ожидание .
Осталось вычислить и .
Используя полученные в решении задачи 3 частные законы распределения, получаем
; ;
и значит,
чего и следовало ожидать вследствие независимости случайных величин.
Задача 7.
Случайный вектор (x, h) принимает значения (0,0), (1,0), (–1,0), (0,1) и (0,–1) равновероятно. Вычислить ковариацию случайных величин x и h. Показать, что они зависимы.
Решение
. Поскольку Р(x=0)=3/5, P(x=1)=1/5, P(x=–1)=1/5; Р(h=0)=3/5, P(h=1)=1/5, P(h=–1)=1/5, то Мx=3/5´0+1/5´1+1/5´(–1)=0 и Мh=0;
М(xh)=0´0´1/5+1´0´1/5–1´0´1/5+0´1´1/5–0´1´1/5=0.
Получаем cov(x, h)=М(xh)–МxМh=0, и случайные величины некоррелированны. Однако они зависимы. Пусть x=1, тогда условная вероятность события {h=0} равна Р(h=0|x=1)=1 и не равна безусловной Р(h=0)=3/5, или вероятность {ξ=0,η=0} не равна произведению вероятностей: Р(x=0,h=0)=1/5¹Р(x=0)Р(h=0)=9/25. Следовательно, x и h зависимы.
Задача 8
. Случайные приращения цен акций двух компаний за день x и h имеют совместное распределение, заданное таблицей:
Найти коэффициент корреляции.
Решение.
Прежде всего вычисляем Mxh=0,3-0,2-0,1+0,4=0,4. Далее находим частные законы распределения x и h:
Определяем Mx=0,5-0,5=0; Mh=0,6-0,4=0,2; Dx=1; Dh=1–0,22=0,96; cov(x, h)=0,4. Получаем
.
Задача 9.
Случайные приращения цен акций двух компаний за день имеют дисперсии Dx=1 и Dh=2, а коэффициент их корреляции r=0,7. Найти дисперсию приращения цены портфеля из 5 акций первой компании и 3 акций второй компании.
Решение
. Используя свойства дисперсии, ковариации и определение коэффициента корреляции, получаем:
Задача 10
.
Распределение двумерной случайной величины задано таблицей:
Найти условное распределение и условное математическое ожидание h при x=1.
Решение.
Условное математическое ожидание равно
Из условия задачи найдем распределение составляющих h и x (последний столбец и последняя строка таблицы).
План проведения семинара-практикума для учителей математики ОУ города Тулы по теме «Решение заданий ЕГЭ по математике из разделов: комбинаторика, теория вероятностей. Методика обучения»
Время проведения
: 12 00 ; 15 00
Место проведения
: МБОУ «Лицей № 1», каб. № 8
I
. Решение задач на вероятность
1. Решение задач на классическое определение вероятности
Мы, как учителя, уже знаем, что основные типы задач в ЕГЭ по теории вероятностей основаны на классическом определении вероятности. Вспомним, что называется вероятностью события?
Вероятностью события
называется отношение числа исходов, благоприятствующих данному событию, к общему числу исходов.
В нашем научно-методическом объединении учителей математики выработана общая схема решения задач на вероятность. Вашему вниманию я ее хочу представить. Кстати, мы поделились своим опытом работы, и у вас в материалах, которые мы вашему вниманию дали для совместного обсуждения решения задач, мы эту схему дали. Тем не менее, я хочу ее озвучить.
На наш взгляд эта схема помогает быстрее логически разложить все по полочкам, и после этого задача поддается решению гораздо легче и для учителя, и для учащихся.
Так, я хочу разобрать подробно задачу следующего содержания.
Мне хотелось совместно с вами побеседовать, чтобы объяснить методику, как до ребят донести такое решение, в процессе которого ребята бы поняли эту типовую задачу, и в последствии они бы сами в этих задачах разбирались.
Что в данной задаче является случайным экспериментом? Теперь нам необходимо вычленить элементарное событие в этом эксперименте. Что является этим элементарным событием? Перечислим их.
Вопросы по задаче?
Уважаемые коллеги, вы тоже, очевидно, рассматривали задачи на вероятность с игральными кубиками. Думаю, нам надо разобрать ее, потому как есть свои нюансы. Давайте будем разбирать данную задачу согласно той схеме, которую мы вам предложили. Так как на каждой грани кубика есть число от 1 до 6, то элементарными события представляют собой числа 1, 2, 3, 4, 5, 6. Мы нашли, что общее число элементарных событий равно 6. Определим, какие элементарные события благоприятствуют событию
. Благоприятствуют этому событию всего два события – 5 и 6 (так как из условия следует, что должно выпасть 5 и 6 очков).
Пояснить, что все элементарные события равновозможны. Какие будут вопросы по задаче?
Как вы понимаете, что монета симметрична? Давайте разберемся в этом, иногда определенные фразы вызывают недопонимание. Давайте в понятийном режиме разберемся в этой задаче. Давайте разберемся с вами в том эксперименте, который описан, какие могут быть элементарные исходы. Вы все представляете, где орел, где решка? Какие могут быть варианты выпадения? Есть другие события? Сколько общее число событий? По задаче известно, что орел выпал ровно один раз. Значит, данному событию
благоприятствуют элементарные события из этих четырех ОР и РО, два раза уже такого быть не может. Используем формулу, по которой находится вероятность события. Напомним, что ответы в части В должны представлять собой либо целое число, либо десятичную дробь.
Показываем на интерактивной доске. Читаем задачу. Что является элементарным исходом в этом опыте? Уточнить, что пара упорядоченная – то есть число выпало на первом кубике, и на втором кубике. В любой задаче есть такие моменты, когда нужно выбирать рациональные методы, формы и представлять решение в виде таблиц, схем и т.д. В данной задаче удобно использовать такую таблицу. Я вам даю уже готовое решение, но в ходе решения выясняется, что в данной задаче рационально использовать решение в виде таблицы. Объясняем, что обозначает таблица. Вам понятно, почему в столбцах написано 1, 2, 3, 4, 5, 6.
Начертим квадрат. Строки соответствуют результатам первого броска – их шесть, потому что у кубика шесть граней. Как и столбцы. В каждой клетке напишем сумму выпавших очков. Показываем заполненную таблицу. Закрасим клетки, где сумма равна восьми (так как это требуется в условии).
Я полагаю, что следующую задачу, после разбора предыдущих, можно дать ребятам решить самостоятельно.
В следующих задачах нет нужды выписывать все элементарные исходы. Достаточно просто подсчитать их количество.
(Без решения) Такую задачу я давал решить ребятам самостоятельно. Алгоритм решения задачи
1. Определяем, в чем состоит случайный эксперимент и что является случайным событием.
2. Находим общее число элементарных событий.
3. Находим число событий, благоприятствующих событию, указанному в условии задачи.
4. Находим вероятность события с использованием формулы
.
Учащимся можно задать вопрос, если 1000 аккумуляторов поступило в продажу, а среди них 6 неисправных, то выбранный аккумулятор определяется как? Чем он является в нашей задаче? Дальше я задаю вопрос о нахождении, что здесь используется в качестве числа
и предлагаю найти это
число
. Дальше спрашиваю, что является здесь событием? Сколько аккумуляторов благоприятствует выполнению события? Далее, используя формулу, вычисляем данную вероятность.
Здесь ребятам можно предложить второй способ решения. Давайте обсудим, какой может быть этот способ?
1. Какое событие можно рассмотреть теперь?
2. Как найти вероятность данного события?
Ребятам нужно сказать об этих формулах. Они следующие
Восьмую задачу можно предложить ребятам самостоятельно, так как она аналогично шестой задаче. Ее им можно предложить в качестве самостоятельной работы, или на карточке у доски.
Данную задачу можно решить применительно к олимпиаде, которая сейчас проходит. Несмотря на то, что в задачах участвуют разные события, однако же задачи являются типовыми.
2. Простейшие правила и формулы вычисления вероятностей (противоположные события, сумма событий, произведение событий)
Это задача из сборника ЕГЭ. Решение выводим на доску. Какие мы вопросы должны поставить перед учащимися, чтобы разобрать эту задачу.
1. Сколько было автоматов? Раз два автомата, то событий уже два. Задаю вопрос детям – каково будет событие
? Каково будет второе событие?
2.
– это вероятность события. Нам ее вычислять не нужно, так как она дана в условии. По условию задачи вероятность того, что «кофе закончится в обоих автоматах», равна 0,12. Было событие А, было событие В. И появляется новое событие? Я детям задаю вопрос – какое? Это событие, когда в обоих автоматах заканчивается кофе. В данном случае, в теории вероятности это новое событие, которое называется пересечением двух событий А и В и обозначается это таким образом.
Воспользуемся формулой сложения вероятности. Формула следующая
Мы ее даем вам в справочном материале и ребятам можно давать эту формулу. Она позволяет находить вероятность суммы событий. У нас спрашивалась вероятность противоположного события, вероятность которого находится по формуле.
В задаче 13 используется понятие произведения событий, формула для нахождения вероятности которого приведена в приложении.
3. Задачи на применение дерева возможных вариантов
По условию задачи легко составить схему и найти указанные вероятности.
С помощью какого теоретического материала вы разбирали с учащимися решение задач такого рода? Использовали ли вы дерево возможных вариантов или использовали другие методы решения таких задач? Давали ли вы понятие графов? В пятом или шестом классе у ребят есть такие задачи, разбор которых дает понятие графов.
Я бы хотел вас спросить, рассматривали вы с учащимися использование дерева возможных вариантов при решении задач на вероятность? Дело в том, что мало того, что в ЕГЭ есть такие задачи, но появились задачи достаточно сложные, которые мы сейчас будем решать.
Давайте обсудим с вами методику решения таких задач – если она совпадет с моей методикой, как я объясняю ребятам, то мне будет легче с вами работать, если нет, то я помогу вам разобраться с этой задачей.
Давайте мы с вами обсудим события. Какие события в задаче 17 можно вычленить?
При построении дерева на плоскости обозначается точка, которая называется корнем дерева. Далее мы начинаем рассматривать события
и. Мы построим отрезок (в теории вероятностей он называется ветвь). По условию сказано, что первая фабрика выпускает 30% мобильных телефонов этой марки (какой? Той, которую они выпускают), значит, в данный момент я учащихся спрашиваю, чему равна вероятность выпуска первой фабрикой телефонов этой марки, тех, которые они выпускают? Так как событие есть выпуск телефона на первой фабрике, то вероятность этого события есть 30% или 0,3. Остальные телефоны выпущены на второй фабрике – мы строим второй отрезок, и вероятность этого события равна 0,7.
Учащимся задается вопрос – какого типа может быть телефон, выпущенный первой фабрикой? С дефектом или без дефекта. Какого вероятность того, что телефон, выпущенный первой фабрикой, имеет дефект? По условию сказано, что она равна 0,01. Вопрос: какова вероятность того, что телефон, выпущенный первой фабрикой, не имеет дефекта? Так как это событие противоположно данному, то его вероятность равна.
Требуется найти вероятность того, что телефон с дефектом. Он может быть с первой фабрики, а может быть и со второй. Тогда воспользуемся формулой сложения вероятностей и получим, что вся вероятность это есть сумма вероятностей того, что телефон с дефектом с первой фабрики, и что телефон с дефектом со второй фабрики. Вероятность того, что телефон имеет дефект и выпущен на первой фабрике найдем по формуле произведения вероятностей, которая приведена в приложении.
4. Одна из самых сложных задач из банка ЕГЭ на вероятность
Разберем, например, № 320199 из Банка заданий ФИПИ. Это одна из самых сложных задач В6.
Чтобы поступить в институт на специальность «Лингвистика», абитуриент З. должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.
Заметим, что в задаче не спрашивается, будет ли абитуриент по фамилии З. учиться и лингвистике, и коммерции сразу и получать два диплома. Здесь надо найти вероятность того, что З. сможет поступить хотя бы на одну из двух данных специальностей – то есть наберет необходимое количество баллов.
Для того чтобы поступить хотя бы на одну из двух специальностей, З. должен набрать не менее 70 баллов по математике. И по русскому. И еще – обществознания или иностранный.
Вероятность набрать 70 баллов по математике для него равна 0,6.
Вероятность набрать баллы по математике и русскому равна.
Разберемся с иностранным и обществознанием. Нам подходят варианты, когда абитуриент набрал баллы по обществознанию, по иностранному или по обоим. Не подходит вариант, когда ни по языку, ни по «обществу» он не набрал баллов. Значит, вероятность сдать обществознание или иностранный не ниже чем на 70 баллов равна. В результате вероятность сдать математику, русский и обществознание или иностранный равна
Это ответ.
II
. Решение комбинаторных задач
1. Число сочетаний и факториалы
Давайте кратко разберем теоретический материал.
Выражение
n
! читается как «эн-факториал» и обозначает произведение всех натуральных чисел от 1 до
n
включительно:
n
! = 1 · 2 · 3 · … ·
n
.
Кроме того, в математике по определению считают, что 0! = 1. Такое выражение бывает редко, но все же встречается в задачах по теории вероятностей.
Определение
Пусть имеется объектов (карандашей, конфет, чего угодно), из которых требуется выбрать ровно различных объектов. Тогда количество вариантов такого выбора называется
числом сочетаний
из элементов по. Это число обозначается и считается по специальной формуле.
Обозначение
Что дает нам эта формула? На самом деле, без нее не решается практически ни одна серьезная задача.
Для лучшего понимания разберем несколько простейших комбинаторных задач:
Задача
У бармена есть 6 сортов зеленого чая. Для проведения чайной церемонии требуется подать зеленый чай ровно 3 различных сортов. Сколькими способами бармен может выполнить заказ?
Решение
Тут все просто: есть
n
= 6 сортов, из которых надо выбрать
k
= 3 сорта. Число сочетаний можно найти по формуле:
Ответ
Подставляем в формулу. Мы все задачи решить не можем, но типовые задачи мы выписали, они представлены вашему вниманию.
Задача
В группе из 20 студентов надо выбрать 2 представителей для выступления на конференции. Сколькими способами можно это сделать?
Решение
Опять же, всего у нас есть
n
= 20 студентов, а выбрать надо
k
= 2 студента. Находим число сочетаний:
Обратите внимание: красным цветом отмечены множители, входящие в разные факториалы. Эти множители можно безболезненно сократить и тем самым значительно уменьшить общий объем вычислений.
Ответ
190
Задача
На склад завезли 17 серверов с различными дефектами, которые стоят в 2 раза дешевле нормальных серверов. Директор купил в школу 14 таких серверов, а сэкономленные деньги в количестве 200 000 рублей направил на приобретение другого оборудования. Сколькими способами директор может выбрать бракованные серверы?
Решение
В задаче довольно много лишних данных, которые могут сбить с толку. Наиболее важные факты: всего есть
n
= 17 серверов, а директору надо
k
= 14 серверов. Считаем число сочетаний:
Красным цветом снова обозначены множители, которые сокращаются. Итого, получилось 680 комбинаций. В общем, директору есть из чего выбрать.
Ответ
680
Эта задача капризная, так как в этой задаче есть лишние данные. Многих учащихся они сбивают с правильного решения. Всего серверов было 17, а директору необходимо выбрать 14. Подставляя в формулу, получаем 680 комбинаций.
2. Закон умножения
Определение
Закон умножения
в комбинаторике: число сочетаний (способов, комбинаций) в независимых наборах умножается.
Другими словами, пусть имеется
A
способов выполнить одно действие и
B
способов выполнить другое действие. Путь также эти действия независимы, т.е. никак не связаны между собой. Тогда можно найти число способов выполнить первое и второе действие по формуле:
C
=
A
·
B
.
Задача
У Пети есть 4 монеты по 1 рублю и 2 монеты по 10 рублей. Петя, не глядя, достал из кармана 1 монету номиналом 1 рубль и еще 1 монету номиналом 10 рублей, чтобы купить ручку за 11 рублей. Сколькими способами он может выбрать эти монеты?
Решение
Итак, сначала Петя достает
k
= 1 монету из
n
= 4 имеющихся монет номиналом 1 рубль. Число способов сделать это равно
C
4
1
= … = 4.
Затем Петя снова лезет в карман и достает
k
= 1 монету из
n
= 2 имеющихся монет номиналом 10 рублей. Здесь число сочетаний равно
C
2
1
= … = 2.
Поскольку эти действия независимы, общее число вариантов равно
C
= 4 · 2 = 8.
Ответ
Задача
В корзине лежат 8 белых шаров и 12 черных. Сколькими способами можно достать из этой корзины 2 белых шара и 2 черных?
Решение
Всего в корзине
n
= 8 белых шаров, из которых надо выбрать
k
= 2 шара. Это можно сделать
C
8
2
= … = 28 различными способами.
Кроме того, в корзине имеется
n
= 12 черных шаров, из которых надо выбрать опять же
k
= 2 шара. Число способов сделать это равно
C
12
2
= … = 66.
Поскольку выбор белого шара и выбор черного — события независимые, общее число комбинаций считается по закону умножения:
C
= 28 · 66 = 1848. Как видим, вариантов может быть довольно много.
Ответ
1848
Закон умножения показывает, сколькими способами можно выполнить сложное действие, которое состоит из двух и более простых — при условии, что все они независимы.
3. Закон сложения
Если закон умножения оперирует «изолированными» событиями, которые не зависят друг от друга, то в законе сложения все наоборот. Здесь рассматриваются взаимоисключающие события, которые никогда не случаются одновременно.
Например, «Петя вынул из кармана 1 монету» и «Петя не вынул из кармана ни одной монеты» — это взаимоисключающие события, поскольку вынуть одну монету и при этом не вынуть ни одной невозможно.
Аналогично, события «Выбранный наугад шар — белый» и «Выбранный наугад шар — черный» также являются взаимоисключающими.
Определение
Закон сложения
в комбинаторике: если два взаимоисключающих действия можно выполнить
A
и
B
способами соответственно, то эти события можно объединить. При этом возникнет новое событие, которое можно выполнить
X
=
A
+
B
способами.
Другими словами, при объединении взаимоисключающих действий (событий, вариантов) число их комбинаций складывается.
Можно сказать, что закон сложения — это логическое «ИЛИ» в комбинаторике, когда нас устраивает любой из взаимоисключающих вариантов. И наоборот, закон умножения — это логическое «И», при котором нас интересует одновременное выполнение и первого, и второго действия.
Задача
В корзине лежат 9 черных шаров и 7 красных. Мальчик достает 2 шара одинакового цвета. Сколькими способами он может это сделать?
Решение
Если шары одинакового цвета, то вариантов немного: оба они либо черные, либо красные. Очевидно, что эти варианты — взаимоисключающие.
В первом случае мальчику предстоит выбирать
k
= 2 черных шара из
n
= 9 имеющихся. Число способов сделать это равно
C
9
2
= … = 36.
Аналогично, во втором случае выбираем
k
= 2 красных шара из
n
= 7 возможных. Число способов равно
C
7
2
= … = 21.
Осталось найти общее количество способов. Поскольку варианты с черными и красными шарами — взаимоисключающие, по закону сложения имеем:
X
= 36 + 21 = 57.
Ответ
57
Задача
В ларьке продаются 15 роз и 18 тюльпанов. Ученик 9-го класса хочет купить 3 цветка для своей одноклассницы, причем все цветы должны быть одинаковыми. Сколькими способами он может составить такой букет?
Решение
По условию, все цветы должны быть одинаковыми. Значит, будем покупать либо 3 розы, либо 3 тюльпана. В любом случае,
k
= 3.
В случае с розами придется выбирать из
n
= 15 вариантов, поэтому число сочетаний равно
C
15
3
= … = 455. Для тюльпанов же
n
= 18, а число сочетаний —
C
18
3
= … = 816.
Поскольку розы и тюльпаны — это взаимоисключающие варианты, работаем по закону сложения. Получаем общее число вариантов
X
= 455 + 816 = 1271. Это и есть ответ.
Ответ
1271
Дополнительные условия и ограничения
Очень часто в тексте задачи присутствуют дополнительные условия, накладывающие существенные ограничения на интересующие нас сочетания. Сравните два предложения:
Имеется набор из 5 ручек разных цветов. Сколькими способами можно выбрать 3 ручки для обводки чертежа?
Имеется набор из 5 ручек разных цветов. Сколькими способами можно выбрать 3 ручки для обводки чертежа, если среди них обязательно должен быть красный цвет?
В первом случае мы вправе брать любые цвета, какие нам нравятся — дополнительных ограничений нет. Во втором случае все сложнее, поскольку мы обязаны выбрать ручку красного цвета (предполагается, что она есть в исходном наборе).
Очевидно, что любые ограничения резко сокращают итоговое количество вариантов. Ну и как в этом случае найти число сочетаний? Просто запомните следующее правило:
Пусть имеется набор из
n
элементов, среди которых надо выбрать
k
элементов. При введении дополнительных ограничений числа
n
и
k
уменьшаются на одинаковую величину.
Другими словами, если из 5 ручек надо выбрать 3, при этом одна из них должна быть красной, то выбирать придется из
n
= 5 − 1 = 4 элементов по
k
= 3 − 1 = 2 элемента. Таким образом, вместо
C
5
3
надо считать
C
4
2
.
Теперь посмотрим, как это правило работает на конкретных примерах:
Задача
В группе из 20 студентов, среди которых 2 отличника, надо выбрать 4 человека для участия в конференции. Сколькими способами можно выбрать этих четверых, если отличники обязательно должны попасть на конференцию?
Решение
Итак, есть группа из
n
= 20 студентов. Но выбрать надо лишь
k
= 4 из них. Если бы не было дополнительных ограничений, то количество вариантов равнялось числу сочетаний
C
20
4
.
Однако нам поставили дополнительное условие: 2 отличника должны быть среди этих четырех. Таким образом, согласно приведенному выше правилу, мы уменьшаем числа
n
и
k
на 2. Имеем:
Ответ
153
Задача
У Пети в кармане есть 8 монет, из которых 6 монет по рублю и 2 монеты по 10 рублей. Петя перекладывает какие-то три монеты в другой карман. Сколькими способами Петя может это сделать, если известно, что обе монеты по 10 рублей оказались в другом кармане?
Решение
Итак, есть
n
= 8 монет. Петя перекладывает
k
= 3 монеты, из которых 2 — десятирублевые. Получается, что из 3 монет, которые будут переложены, 2 уже зафиксированы, поэтому числа
n
и
k
надо уменьшить на 2. Имеем:
Ответ
III
. Решение комбинированных задач на применение формул комбинаторики и теории вероятностей
Задача
В кармане у Пети было 4 монеты по рублю и 2 монеты по 2 рубля. Петя, не глядя, переложил какие-то три монеты в другой карман. Найдите вероятность того, что обе двухрублевые монеты лежат в одном кармане.
Решение
Предположим, что обе двухрублевые монеты действительно оказались в одном кармане, тогда возможны 2 варианта: либо Петя их вообще не перекладывал, либо переложил сразу обе.
В первом случае, когда двухрублевые монеты не перекладывались, придется переложить 3 монеты по рублю. Поскольку всего таких монет 4, число способов это сделать равно числу сочетаний из 4 по 3:
C
4
3
.
Во втором случае, когда обе двухрублевые монеты были переложены, придется переложить еще одну рублевую монету. Ее надо выбрать из 4 существующих, и число способов так поступить равно числу сочетаний из 4 по 1:
C
4
1
.
Теперь найдем общее число способов переложить монеты. Поскольку всего монет 4 + 2 = 6, а выбрать надо лишь 3 из них, общее число вариантов равно числу сочетаний из 6 по 3:
C
6
3
.
Осталось найти вероятность:
Ответ
0,4
Показать на интерактивной доске. Уделить внимание на то, что по условию задачи Петя, не глядя, переложил три монеты в один карман. Мы, отвечая на этот вопрос, можем предположить, что две двухрублевые монеты действительно остались в одном кармане. Сослаться на формулу сложения вероятностей. Показать еще раз формулу.
Задача
В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.
Решение
Чтобы пятирублевые монеты лежали в разных карманах, надо переложить только одну из них. Количество способов это сделать равно числу сочетаний из 2 по 1:
C
2
1
.
Поскольку всего Петя переложил 3 монеты, придется переложить еще 2 монеты по 10 рублей. Таких монет у Пети 4, поэтому количество способов равно числу сочетаний из 4 по 2:
C
4
2
.
Осталось найти, сколько всего есть вариантов переложить 3 монеты из 6 имеющихся. Это количество, как и в предыдущей задаче, равно числу сочетаний из 6 по 3:
C
6
3
.
Находим вероятность:
В последнем шаге мы умножали число способов выбрать двухрублевые монеты и число способов выбрать десятирублевые, поскольку данные события независимы.
Ответ
0,6
Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что ее можно оформить ее в виде теоремы.
Теорема
Пусть монету бросают
n
раз. Тогда вероятность того, что орел выпадет ровно
k
раз, можно найти по формуле:
Где
C
n
k
— число сочетаний из
n
элементов по
k
, которое считается по формуле:
Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же.
На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться — и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше.
Монету бросают четыре раза. Найдите вероятность того, что орел выпадет ровно три раза.
Решение
По условию задачи, всего бросков было
n
= 4. Требуемое число орлов:
k
= 3. Подставляем
n
и
k
в формулу:
С тем же успехом можно считать число решек:
k
= 4 − 3 = 1. Ответ будет таким же.
Ответ
0,25
Задача [Рабочая тетрадь «ЕГЭ 2012 по математике. Задачи B6»]
Монету бросают три раза. Найдите вероятность того, что решка не выпадет ни разу.
Решение
Снова выписываем числа
n
и
k
. Поскольку монету бросают 3 раза,
n
= 3. А поскольку решек быть не должно,
k
= 0. Осталось подставить числа
n
и
k
в формулу:
Напомню, что 0! = 1 по определению. Поэтому
C
3
0
= 1.
Ответ
0,125
Задача [Пробный ЕГЭ по математике 2012. Иркутск]
В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка.
Решение
Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза (тогда решек будет 1), либо 4 (тогда решек вообще не будет). Найдем вероятность каждого из этих событий.
Пусть
p
1
— вероятность того, что орел выпадет 3 раза. Тогда
n
= 4,
k
= 3. Имеем:
Теперь найдем
p
2
— вероятность того, что орел выпадет все 4 раза. В этом случае
n
= 4,
k
= 4. Имеем:
Чтобы получить ответ, осталось сложить вероятности
p
1
и
p
2
. Помните: складывать вероятности можно только для взаимоисключающих событий. Имеем:
p
=
p
1
+
p
2
= 0,25 + 0,0625 = 0,3125
Ответ
0,3125
В целях экономии вашего времени при подготовке с ребятами к ЕГЭ и ГИА, мы представили решения еще многих задач, которые вы можете выбирать и решать с ребятами.
Материалы ГИА, ЕГЭ различных лет, учебники и сайты.
IV.
Справочный материал
На заводе керамической плитки 5%
произведённых плиток имеют дефект. При контроле качества продукции обнаруживается лишь 40%
дефектных плиток. Остальные плитки отправляются на продажу. Найдите вероятность того, что выбранная случайным образом при покупке плитка не будет иметь дефектов. Ответ округлите до сотых.
Показать решение
Решение
При контроле качества продукции выявляется 40%
дефектных плиток, которые составляют 5%
от произведённых плиток, и они не поступают в продажу. Значит, не поступает в продажу 0,4 · 5% = 2%
от произведённых плиток. Остальная часть произведённых плиток — 100% − 2% = 98%
поступает в продажу.
Не имеет дефектов 100% − 95%
произведённых плиток. Вероятность того, что купленная плитка не имеет дефекта, равна 95% : 98%
= frac{95}{98}approx 0,97
Ответ
Условие
Вероятность того, что аккумулятор не заряжен, равна 0,15.
Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.
Показать решение
Решение
Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85.
Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A
и B
события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85.
Событие «оба аккумулятора заряжены» — это пересечение событий A cap B,
его вероятность равна P(A cap B) =
P(A)cdot P(B) =
0,85cdot 0,85 =
0,7225.
Ответ
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
Вероятность того, что новая стиральная машина в течение года поступит в гарантийный ремонт, равна 0,065
. В некотором городе в течение года было продано 1200
стиральных машин, из которых 72
штуки было передано в гарантийную мастерскую. Определите, насколько отличается относительная частота наступления события «гарантийный ремонт» от его вероятности в этом городе?
Показать решение
Решение
Частота события «стиральная машина в течение года поступит в гарантийный ремонт» равна frac{72}{1200} = 0,06.
От вероятности она отличается на 0,065-0,06=0,005.
Ответ
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
Вероятность того, что ручка бракованная, равна 0,05
. Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.
Показать решение
Решение
Вероятность того, что ручка исправная, равна 1-0,05 = 0,95.
Найдём вероятность события «обе ручки исправны». Обозначим через A
и B
события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95.
Событие «обе ручки исправны» — это пересечение событий Acap B,
его вероятность равна P(Acap B) =
P(A)cdot P(B) =
0,95cdot 0,95 =
0,9025.
Ответ
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.
Показать решение
Решение
Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).
Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.
Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4
раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна frac12cdotfrac12cdotfrac12cdotfrac12=
0,5^4=
0,0625.
Ответ
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Условие
В секции 16
спортсменок, среди них две подруги — Оля и Маша. Спортсменок случайным образом распределяют по 4
равным группам. Найдите вероятность того, что Оля и Маша попадут в одну группу.
Лучшие репетиторы для сдачи ЕГЭ
Открытый банк заданий по теме теория вероятностей. Задания B4 из ЕГЭ по математике (профильный уровень)
Геометрические фигуры на плоскости: нахождение длины, площади, угла, координат
Задание №1060
Условие
На заводе керамической плитки 5% произведённых плиток имеют дефект. При контроле качества продукции обнаруживается лишь 40% дефектных плиток. Остальные плитки отправляются на продажу. Найдите вероятность того, что выбранная случайным образом при покупке плитка не будет иметь дефектов. Ответ округлите до сотых.
Показать решение
Решение
При контроле качества продукции выявляется 40% дефектных плиток, которые составляют 5% от произведённых плиток, и они не поступают в продажу. Значит, не поступает в продажу 0,4 · 5% = 2% от произведённых плиток. Остальная часть произведённых плиток — 100% − 2% = 98% поступает в продажу.
Не имеет дефектов 100% − 95% произведённых плиток. Вероятность того, что купленная плитка не имеет дефекта, равна 95% : 98% = frac{95}{98}approx 0,97
Ответ
0,97
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1059
Условие
Вероятность того, что аккумулятор не заряжен, равна 0,15. Покупатель в магазине приобретает случайную упаковку, которая содержит два таких аккумулятора. Найдите вероятность того, что оба аккумулятора в этой упаковке окажутся заряжены.
Показать решение
Решение
Вероятность того, что аккумулятор заряжён, равна 1-0,15 = 0,85. Найдём вероятность события «оба аккумулятора заряжены». Обозначим через A и B события «первый аккумулятор заряжён» и «второй аккумулятор заряжён». Получили P(A) = P(B) = 0,85. Событие «оба аккумулятора заряжены» — это пересечение событий A cap B, его вероятность равна P(A cap B) = P(A)cdot P(B) = 0,85cdot 0,85 = 0,7225.
Ответ
0,7225
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1058
Условие
Вероятность того, что новая стиральная машина в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе в течение года было продано 1200 стиральных машин, из которых 72 штуки было передано в гарантийную мастерскую. Определите, насколько отличается относительная частота наступления события «гарантийный ремонт» от его вероятности в этом городе?
Показать решение
Решение
Частота события «стиральная машина в течение года поступит в гарантийный ремонт» равна frac{72}{1200} = 0,06. От вероятности она отличается на 0,065-0,06=0,005.
Ответ
0,005
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1057
Условие
Вероятность того, что ручка бракованная, равна 0,05. Покупатель в магазине приобретает случайную упаковку, которая содержит две ручки. Найдите вероятность того, что обе ручки в этой упаковке окажутся исправными.
Показать решение
Решение
Вероятность того, что ручка исправная, равна 1-0,05 = 0,95. Найдём вероятность события «обе ручки исправны». Обозначим через A и B события «первая ручка исправна» и «вторая ручка исправна». Получили P(A) = P(B) = 0,95. Событие «обе ручки исправны» — это пересечение событий Acap B, его вероятность равна P(Acap B) = P(A)cdot P(B) = 0,95cdot 0,95 = 0,9025.
Ответ
0,9025
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1056
Условие
На рисунке изображён лабиринт. Жук заползает в лабиринт в точке «Вход». Развернуться и ползти в обратном направлении жук не может, поэтому на каждой развилке он выбирает один из путей, в котором еще не был. С какой вероятностью жук придет к выходу Д, если выбор дальнейшего пути является случайным.
Показать решение
Решение
Расставим на перекрёстках стрелки в направлениях, по которым может двигаться жук (см. рис.).
Выберем на каждом из перекрёстков одно направление из двух возможных и будем считать, что при попадании на перекрёсток жук будет двигаться по выбранному нами направлению.
Чтобы жук достиг выхода Д, нужно, чтобы на каждом перекрёстке было выбрано направление, обозначенное сплошной красной линией. Всего выбор направления делается 4 раза, каждый раз независимо от предыдущего выбора. Вероятность того, что каждый раз выбрана сплошная красная стрелка, равна frac12cdotfrac12cdotfrac12cdotfrac12= 0,5^4= 0,0625.
Ответ
0,0625
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1055
Условие
В секции 16 спортсменок, среди них две подруги — Оля и Маша. Спортсменок случайным образом распределяют по 4 равным группам. Найдите вероятность того, что Оля и Маша попадут в одну группу.
Показать решение
Решение
Сформируем группы по 16 : 4 = 4 (человека), последовательно помещая спортсменов на свободные места, при этом начнём с Оли и Маши. Сначала поместим Олю на случайно выбранное место из 16. Теперь помещаем на свободное место Машу (исходом этого эксперимента будем считать выбор места для неё). Всего имеется 15 свободных мест (одно уже заняла Оля), поэтому всего возможны 15 исходов. В одной группе с Олей останется 3 свободных места, поэтому событию «Оля и Маша в одной группе» благоприятствуют 3 исхода. Вероятность этого события равна frac{3}{15}=0,2.
Ответ
0,2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1054
Условие
В группе туристов 50 человек. Их микроавтобусом в несколько приёмов завозят к отправной точке маршрута по 10 человек за рейс. Порядок перевозки туристов случаен. Найдите вероятность того, что турист П. отправится в первом рейсе микроавтобуса.
Показать решение
Решение
Пусть выбор места в микроавтобусе — исход, выбор места в первом микроавтобусе — благоприятный исход. Общее число исходов равно 50 (общее число мест), благоприятных исходов 10 (число мест на первом рейсе). По определению, вероятность равна frac{10}{50}=0,2.
Ответ
0,2
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1053
Условие
Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 7»?
Показать решение
Решение
Исходом будем считать пару чисел: очки при первом и втором броске. Тогда указанному событию благоприятствуют следующие исходы: 1-6, 2-5, 3-4, 4-3, 5-2, 6-1. Их количество равно 6.
Ответ
6
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1052
Условие
В классе 25 человек. С помощью жребия они выбирают трёх человек, которые должны пойти на митинг. Найдите вероятность того, что обучающийся в этом классе ученик К., пойдёт на митинг.
Показать решение
Решение
Пусть по жребию пойдут на митинг три человека, которые выберут жребии с номерами «1», «2» и «3» из 25 возможных. Пусть исходом будет получение учеником К. определённого номера. Тогда общее число исходов равно 25, благоприятных исходов 3. По определению, вероятность равна frac{3}{25}=0,12.
Ответ
0,12
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №1051
Условие
Стоянка освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,4. Найдите вероятность того, что за год хотя бы одна лампа не перегорит.
Показать решение
Решение
Сначала найдём вероятность события «обе лампы перегорели в течение года», противоположного событию из условия задачи. Обозначим через A и B события «первая лампа перегорела в течение года» и «вторая лампа перегорела в течение года». По условию P(A) = P(B) = 0,4. Событие «обе лампы перегорели в течение года» — это A cap B, его вероятность равна P(A cap B) = P(A) cdot P(B) = 0,4 cdot 0,4 = 0,16 (так как события A и B независимы).
Искомая вероятность равна 1 — P(A cap B) = 1 — 0,16 = 0,84.
Ответ
0,84
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Лучшие репетиторы для сдачи ЕГЭ
Двумерной называют случайную величину
, возможные значения
которой есть пары чисел
. Составляющие
и
, рассматриваемые
одновременно, образуют систему двух случайных величин. Двумерную величину
геометрически можно истолковать как случайную точку
на плоскости
либо как случайный вектор
.
Дискретной называют двумерную величину, составляющие которой дискретны.
Закон распределения дискретной двумерной СВ.
Безусловные и условные законы распределения составляющих
Законом распределения вероятностей двумерной случайной величины называют соответствие
между возможными значениями и их вероятностями.
Закон
распределения дискретной двумерной случайной величины может быть задан:
а) в
виде таблицы с двойными входом, содержащей возможные значения и их вероятности;
б) аналитически, например в виде функции распределения.
Зная
закон распределения двумерной дискретной случайной величины, можно найти законы
каждой из составляющих. В общем случае, для того чтобы найти вероятность
, надо просуммировать
вероятности столбца
. Аналогично сложив
вероятности строки
получим вероятность
.
Пусть
составляющие
и
дискретны и имеют соответственно следующие
возможные значения:
;
.
Условным распределением составляющей
при
(j сохраняет одно и то же
значение при всех возможных значениях
) называют совокупность
условных вероятностей:
Аналогично
определяется условное распределение
.
Условные
вероятности составляющих
и
вычисляют соответственно по формулам:
Для
контроля вычислений целесообразно убедиться, что сумма вероятностей условного
распределения равна единице.
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Ковариация (корреляционный момент)
Ковариация двух случайных величин характеризует степень зависимости случайных величин, так
и их рассеяние вокруг точки
.
Ковариацию
(корреляционный момент) можно найти по формуле:
Свойства ковариации
Свойство 1.
Ковариация двух независимых случайных величин равна нулю.
Свойство 2.
Ковариация двух случайных величин равна математическому ожиданию их
произведение математических ожиданий.
Свойство 3.
Ковариация двухмерной случайной величины по абсолютной случайной величине не
превосходит среднеквадратических отклонений своих компонентов.
Коэффициент корреляции
Коэффициент корреляции – отношение ковариации двухмерной случайной
величины к произведению среднеквадратических отклонений.
Формула коэффициента корреляции:
Две
случайные величины
и
называют коррелированными, если их коэффициент
корреляции отличен от нуля.
и
называют некоррелированными величинами, если
их коэффициент корреляции равен нулю
Свойства коэффициента корреляции
Свойство 1.
Коэффициент корреляции двух независимых случайных величин равен нулю. Отметим,
что обратное утверждение неверно.
Свойство 2.
Коэффициент корреляции двух случайных величин не превосходит по абсолютной
величине единицы.
Свойство 3.
Коэффициент корреляции двух случайных величин равен по модулю единице тогда и
только тогда, когда между величинами существует линейная функциональная
зависимость.
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Линейная регрессия
Рассмотрим
двумерную случайную величину
, где
и
– зависимые случайные величины. Представим
одну из величины как функцию другой. Ограничимся приближенным представлением
величины
в виде линейной функции величины
:
где
и
– параметры, подлежащие определению. Это можно
сделать различными способами и наиболее употребительный из них – метод
наименьших квадратов.
Линейная
средняя квадратическая регрессия
на
имеет вид:
Коэффициент
называют
коэффициентом регрессии
на
, а прямую
называют
прямой среднеквадратической регрессии
на
.
Аналогично
можно получить прямую среднеквадратической регрессии
на
:
Смежные темы решебника:
- Двумерная непрерывная случайная величина
- Линейный выборочный коэффициент корреляции
- Парная линейная регрессия и метод наименьших квадратов
Задача 1
Закон
распределения дискретной двумерной случайной величины (X,Y) задан таблицей.
Требуется:
—
определить одномерные законы распределения случайных величин X и Y;
— найти
условные плотности распределения вероятностей величин;
—
вычислить математические ожидания mx и my;
—
вычислить дисперсии σx и σy;
—
вычислить ковариацию μxy;
—
вычислить коэффициент корреляции rxy.
xy | 3 | 5 | 8 | 10 | 12 |
-1 | 0.04 | 0.04 | 0.03 | 0.03 | 0.01 |
1 | 0.04 | 0.07 | 0.06 | 0.05 | 0.03 |
3 | 0.05 | 0.08 | 0.09 | 0.08 | 0.05 |
6 | 0.03 | 0.04 | 0.04 | 0.06 | 0.08 |
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 2
Задана
дискретная двумерная случайная величина (X,Y).
а) найти
безусловные законы распределения составляющих; б) построить регрессию случайной
величины Y на X; в) построить регрессию случайной величины X на Y; г) найти коэффициент ковариации; д) найти
коэффициент корреляции.
Y | X | ||||
1 | 2 | 3 | 4 | 5 | |
30 | 0.05 | 0.03 | 0.02 | 0.01 | 0.01 |
40 | 0.03 | 0.02 | 0.02 | 0.04 | 0.01 |
50 | 0.05 | 0.03 | 0.02 | 0.02 | 0.01 |
70 | 0.1 | 0.03 | 0.04 | 0.03 | 0.01 |
90 | 0.1 | 0.04 | 0.01 | 0.07 | 0.2 |
Задача 3
Двумерная случайная величина (X,Y) задана
таблицей распределения. Найти законы распределения X и Y, условные
законы, регрессию и линейную регрессию Y на X.
x y |
1 | 2 | 3 |
1.5 | 0.03 | 0.02 | 0.02 |
2.9 | 0.06 | 0.13 | 0.03 |
4.1 | 0.4 | 0.07 | 0.02 |
5.6 | 0.15 | 0.06 | 0.01 |
Задача 4
Двумерная
случайная величина (X,Y) распределена по закону
XY | 1 | 2 |
-3 | 0,1 | 0,2 |
0 | 0,2 | 0,3 |
-3 | 0 | 0,2 |
Найти
законы распределения случайных величины X и Y, условный закон
распределения Y при X=0 и вычислить ковариацию.
Исследовать зависимость случайной величины X и Y.
Задача 5
Случайные
величины ξ и η имеют следующий совместный закон распределения:
P(ξ=1,η=1)=0.14
P(ξ=1,η=2)=0.18
P(ξ=1,η=3)=0.16
P(ξ=2,η=1)=0.11
P(ξ=2,η=2)=0.2
P(ξ=2,η=3)=0.21
1)
Выписать одномерные законы распределения случайных величин ξ и η, вычислить
математические ожидания Mξ, Mη и дисперсии Dξ, Dη.
2) Найти
ковариацию cov(ξ,η) и коэффициент корреляции ρ(ξ,η).
3)
Выяснить, зависимы или нет события {η=1} и {ξ≥η}
4)
Составить условный закон распределения случайной величины γ=(ξ|η≥2) и найти Mγ и
Dγ.
Задача 6
Дан закон
распределения двумерной случайной величины (ξ,η):
ξ=-1 | ξ=0 | ξ=2 | |
η=1 | 0,1 | 0,1 | 0,1 |
η=2 | 0,1 | 0,2 | 0,1 |
η=3 | 0,1 | 0,1 | 0,1 |
1) Выписать одномерные законы
распределения случайных величин ξ и η, вычислить математические ожидания Mξ,
Mη и дисперсии Dξ, Dη
2) Найти ковариацию cov(ξ,η) и
коэффициент корреляции ρ(ξ,η).
3) Являются ли случайные события |ξ>0|
и |η> ξ | зависимыми?
4) Составить условный закон
распределения случайной величины γ=(ξ|η>0) и найти Mγ и Dγ.
Задача 7
Дано
распределение случайного вектора (X,Y). Найти ковариацию X и Y.
XY | 1 | 2 | 4 |
-2 | 0,25 | 0 | 0,25 |
1 | 0 | 0,25 | 0 |
3 | 0 | 0,25 | 0 |
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 8
Случайные
приращения цен акций двух компаний за день имеют совместное распределение,
заданное таблицей. Найти ковариацию этих случайных величин.
YX | -1 | 1 |
-1 | 0,4 | 0,1 |
1 | 0,2 | 0,3 |
Задача 9
Найдите
ковариацию Cov(X,Y) для случайного дискретного вектора (X,Y),
распределенного по закону:
X=-3 | X=0 | X=1 | |
Y=-2 | 0,3 | ? | 0,1 |
Y=1 | 0,1 | 0,1 | 0,2 |
Задача 10
Совместный
закон распределения пары
задан таблицей:
xh | -1 | 0 | 1 |
-1 | 1/12 | 1/4 | 1/6 |
1 | 1/4 | 1/12 | 1/6 |
Найти
закон распределения вероятностей случайной величины xh и вычислить cov(2x-3h,x+2h).
Исследовать вопрос о зависимости случайных величин x и h.
Задача 11
Составить двумерный закон распределения случайной
величины (X,Y), если известны законы независимых составляющих. Чему равен коэффициент
корреляции rxy?
X | 20 | 25 | 30 | 35 |
P | 0.1 | 0.1 | 0.4 | 0.4 |
и
Задача 12
Задано
распределение вероятностей дискретной двумерной случайной величины (X,Y):
XY | 0 | 1 | 2 |
-1 | ? | 0,1 | 0,2 |
1 | 0,1 | 0,2 | 0,3 |
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 13
Совместное
распределение двух дискретных случайных величин ξ и η задано таблицей:
ξη | -1 | 1 | 2 |
0 | 1/7 | 2/7 | 1/7 |
1 | 1/7 | 1/7 | 1/7 |
Вычислить
ковариацию cov(ξ-η,η+5ξ). Зависимы ли ξ и η?
Задача 14
Рассчитать
коэффициенты ковариации и корреляции на основе заданного закона распределения
двумерной случайной величины и сделать выводы о тесноте связи между X и Y.
XY | 2,3 | 2,9 | 3,1 | 3,4 |
0,2 | 0,15 | 0,15 | 0 | 0 |
2,8 | 0 | 0,25 | 0,05 | 0,01 |
3,3 | 0 | 0,09 | 0,2 | 0,1 |
Задача 15
Задан
закон распределения случайного вектора (ξ,η). Найдите ковариацию (ξ,η)
и коэффициент корреляции случайных величин.
xy | 1 | 4 |
-10 | 0,1 | 0,2 |
0 | 0,3 | 0,1 |
20 | 0,2 | 0,1 |
Задача 16
Для
случайных величин, совместное распределение которых задано таблицей
распределения. Найти:
а) законы
распределения ее компонент и их числовые характеристики;
b) условные законы распределения СВ X при условии Y=b и СВ Y при
условии X=a, где a и b – наименьшие значения X и Y.
с)
ковариацию и коэффициент корреляции случайных величин X и Y;
d) составить матрицу ковариаций и матрицу корреляций;
e) вероятность попадания в область, ограниченную линиями y=16-x2 и y=0.
f) установить, являются ли случайные величины X и Y зависимыми;
коррелированными.
XY | -1 | 0 | 1 | 2 |
-1 | 0 | 1/6 | 0 | 1/12 |
0 | 1/18 | 1/9 | 1/12 | 1/9 |
2 | 1/6 | 0 | 1/9 | 1/9 |
Задача 17
Совместный
закон распределения случайных величин X и Y задан таблицей:
XY |
0 |
1 |
3 |
0 |
0,15 |
0,05 |
0,3 |
-1 |
0 |
0,15 |
0,1 |
-2 |
0,15 |
0 |
0,1 |
Найдите:
а) закон
распределения случайной величины X и закон распределения
случайной величины Y;
б) EX, EY, DX, DY, cov(2X+3Y, X-Y), а
также математическое ожидание и дисперсию случайной величины V=6X-8Y+3.
Задача 18
Известен
закон распределения двумерной случайной величины (X,Y).
а) найти
законы распределения составляющих и их числовые характеристики (M[X],D[X],M[Y],D[Y]);
б)
составить условные законы распределения составляющих и вычислить
соответствующие мат. ожидания;
в)
построить поле распределения и линию регрессии Y по X и X по Y;
г)
вычислить корреляционный момент (коэффициент ковариации) μxy и
коэффициент корреляции rxy.
|
5 | 20 | 35 |
100 | — | — | 0.05 |
115 | — | 0.2 | 0.15 |
130 | 0.15 | 0.35 | — |
145 | 0.1 | — | —- |
Подборка по базе: ФОС задачи (4).docx, Цели и задачи воспитания.pdf, Решение педагогической задачи.docx, Shalaumova_T.V. задачи.doc, Практическая работа№1 Решение педагогической задачи.docx, Тест _Основные положения теории Ч. Дарвина. Современные представ, Ситуационные задачи по ГБТ.doc, Задачи PISA.docx, Цель и задачи управленческого учета.docx, Международное парво семинар 1 задачи.doc
4. Повторные независимые испытания. Теорема Бернулли
Задача 1. Игральная кость брошена 6 раз. Найти вероятность того, что ровно 3 раза выпадет «шестерка».
Решение. Шестикратное бросание кости можно рассматривать как последовательность независимых испытаний с вероятностью успеха («шестерки»), равной 1/6, и вероятностью неудачи — 5/6. Искомую вероятность вычисляем по формуле .
Задача 2. Монета бросается 6 раз. Найти вероятность того, что герб выпадет не более, чем 2 раза.
Решение. Искомая вероятность равна сумме вероятностей трех событий, состоящих в том, что герб не выпадет ни разу, либо один раз, либо два раза:
Р(А) = Р6(0) + Р6(1) + Р6(2) = .
Задача 3. Аудитор обнаруживает финансовые нарушения у проверяемой фирмы с вероятностью 0,9. Найти вероятность того, что среди 4 фирм-нарушителей будет выявлено больше половины.
Решение. Событие состоит в том, что из 4 фирм-нарушителей будет выявлено три или четыре, т.е.
.
Задача 4. Монета подбрасывается 3 раза. Найти наиболее вероятное число успехов (выпадений герба).
Решение. Возможными значениями для числа успехов в трех рассматриваемых испытаниях являются m = 0, 1, 2 или 3. Пусть Am — событие, состоящее в том, что при трех подбрасываниях монеты герб появляется m раз. По формуле Бернулли легко найти вероятности событий Am (см. таблицу):
-
m 0 1 2 3 Pn(m) 1/8 3/8 3/8 1/8
Из этой таблицы видно, что наиболее вероятными значениями являются числа 1 и 2 (их вероятности равны 3/8). Этот же результат можно получить и из теоремы 2. Действительно, n=3, p=1/2, q=1/2. Тогда
, т.е.
.
Задача 5. В результате каждого визита страхового агента договор заключается с вероятностью 0,1. Найти наивероятнейшее число заключенных договоров после 25 визитов.
Решение. Имеем n=10, p=0,1, q=0,9. Неравенство для наиболее вероятного числа успехов принимает вид: 250,1–0,9m*250,1+0,1 или 1,6m*2,6. У этого неравенства только одно целое решение, а именно, m*=2.
Задача 6. Известно, что процент брака для некоторой детали равен 0,5%. Контролер проверяет 1000 деталей. Какова вероятность обнаружить ровно три бракованные детали? Какова вероятность обнаружить не меньше трех бракованных деталей?
Решение. Имеем 1000 испытаний Бернулли с вероятностью «успеха» р=0,005. Применяя пуассоновское приближение с λ=np=5, получаем
1) P1000(3) ;
2) P1000(m3)=1P1000(m<3)=1[ ]1
,
и Р1000(3)0,14; Р1000(m3)0,875.
Задача 7. Вероятность покупки при посещении клиентом магазина составляет р=0,75. Найти вероятность того, что при 100 посещениях клиент совершит покупку ровно 80 раз.
Решение. В данном случае n=100, m=80, p=0,75, q=0,25. Находим , и определяем (x)=0,2036, тогда искомая вероятность равна Р100(80)=
.
Задача 8. Страховая компания заключила 40000 договоров. Вероятность страхового случая по каждому из них в течение года составляет 2%. Найти вероятность, что таких случаев будет не более 870.
Решение. По условию задачи n=40000, p=0,02. Находим np=800, . Для вычисления Р(m£870) воспользуемся интегральной теоремой Муавра-Лапласа:
Р(0
0(х2) –Ф0(х1), где и
.
Находим по таблице значений функции Лапласа:
Р(0
0(х2)–Ф0(х1)=Ф0(2,5)–Ф0(–28,57)=0,4938+0,5=0,9938.
Задача 9. Вероятность появления события в каждом из 400 независимых испытаний равна 0,8. Найти такое положительное число , чтобы с вероятностью 0,99 абсолютная величина отклонения относительной частоты появления события от его вероятности не превышала .
Решение. По условию задачи p=0,8, n=400. Используем следствие из интегральной теоремы Муавра-Лапласа: . Следовательно,
. По таблице для функции Лапласа определяем
. Отсюда =0,0516.
Задача 10. Курс акции за день может подняться на 1 пункт с вероятностью 50%, опуститься на 1 пункт с вероятностью 30% и остаться неизменным с вероятностью 20%. Найти вероятность того, что за 5 дней торгов курс поднимется на 2 пункта.
Решение. Возможны только следующие два варианта развития событий:
1) курс растет 2 дня, ни разу не падает, не меняется 3 дня;
2) курс растет 3 дня, падает 1 день, не меняется 1 день.
Таким образом,
5. Дискретные случайные величины
Задача 1. В связке из 3 ключей только один ключ подходит к двери. Ключи перебирают до тех пор, пока не отыщется подходящий ключ. Построить закон распределения для случайной величины – числа опробованных ключей.
Решение. Число опробованных ключей может равняться 1, 2 или 3. Если испытали только один ключ, это означает, что этот первый ключ сразу подошел к двери, а вероятность такого события равна 1/3. Итак, Далее, если опробованных ключей было 2, т.е. =2, это значит, что первый ключ не подошел, а второй – подошел. Вероятность этого события равна 2/3×1/2=1/3. То есть,
Аналогично вычисляется вероятность
В результате получается следующий ряд распределения:
| 1 | 2 | 3 |
P | 1/3 | 1/3 | 1/3 |
Задача 2. Построить функцию распределения F(x) для случайной величины из задачи 1.
Решение. Случайная величина имеет три значения 1, 2, 3, которые делят всю числовую ось на четыре промежутка: . Если x<1, то неравенство x невозможно (левее x нет значений случайной величины ) и значит, для такого x функция F(x)=0.
Если 1x<2, то неравенство x возможно только если =1, а вероятность такого события равна 1/3, поэтому для таких x функция распределения F(x)=1/3.
Если 2x<3, неравенство x означает, что или =1, или =2, поэтому в этом случае вероятность P(
(x)=2/3.
И, наконец, в случае x3 неравенство x выполняется для всех значений случайной величины , поэтому P(
(x)=1.
Итак, мы получили следующую функцию:
Задача 3. Совместный закон распределения случайных величин x и h задан c помощью таблицы
x h | 1 | 2 |
–1 | 1/16 | 3/16 |
0 | 1/16 | 3/16 |
1 | 1/8 | 3/8 |
Вычислить частные законы распределения составляющих величин x и h. Определить, зависимы ли они. Вычислить вероятность .
Решение. Частное распределение для x получается суммированием вероятностей в строках:
;
;
.
Аналогично получается частное распределение для h:
;
.
Полученные вероятности можно записать в ту же таблицу напротив соответствующих значений случайных величин:
x h | 1 | 2 | px |
–1 | 1/16 | 3/16 | 1/4 |
0 | 1/16 | 3/16 | 1/4 |
1 | 1/8 | 3/8 | 1/2 |
ph | 1/4 | 3/4 | 1 |
Теперь ответим на вопрос о независимости случайных величин x и h. С этой целью для каждой клетки совместного распределения вычислим произведение (т.е. сумм по соответствующей строке и столбцу) и сравним его со значением вероятности
в этой клетке. Например, в клетке для значений x=-1 и h=1 стоит вероятность 1/16, а произведение соответствующих частных вероятностей 1/4×1/4 равно 1/16, т.е. совпадает с совместной вероятностью. Это условие так же проверяется в оставшихся пяти клетках, и оно оказывается верным во всех. Следовательно, случайные величины x и h независимы.
Заметим, что если бы наше условие нарушалось хотя бы в одной клетке, то величины следовало бы признать зависимыми.
Для вычисления вероятности отметим клетки, для которых выполнено условие
. Таких клеток всего три, и соответствующие вероятности в этих клетках равны 1/8, 3/16, 3/8. Их сумма равна 11/16, это и есть искомая вероятность. Вычисление этой вероятности можно записать так:
Задача 4. Пусть случайная величина ξ имеет следующий закон распределения:
| –1 | 0 | 2 |
P | 1/4 | 1/4 | 1/2 |
Вычислить математическое ожидание M, дисперсию D и среднеквадратическое отклонение .
Решение. По определению математическое ожидание равно
.
Далее
,
а потому
.
Среднее квадратическое отклонение .
Задача 5. Для пары случайных величин из задачи 3 вычислить .
Решение. Воспользуемся формулой . А именно, в каждой клетке таблицы выполняем умножение соответствующих значений
и
, результат умножаем на вероятность pij, и все это суммируем по всем клеткам таблицы. В итоге получаем:
Задача 6. Для пары случайных величин из задачи 3 вычислить ковариацию cov(,).
Решение. В предыдущей задаче уже было вычислено математическое ожидание . Осталось вычислить
и
. Используя полученные в решении задачи 3 частные законы распределения, получаем
;
;
и значит,
,
чего и следовало ожидать вследствие независимости случайных величин.
Задача 7. Случайный вектор (x,h) принимает значения (0,0), (1,0), (–1,0), (0,1) и (0,–1) равновероятно. Вычислить ковариацию случайных величин x и h. Показать, что они зависимы.
Решение. Поскольку Р(x=0)=3/5, P(x=1)=1/5, P(x=–1)=1/5; Р(h=0)=3/5, P(h=1)=1/5, P(h=–1)=1/5, то Мx=3/50+1/51+1/5(–1)=0 и Мh=0;
М(xh)=0´0´1/5+1´0´1/5–1´0´1/5+0´1´1/5–0´1´1/5=0.
Получаем cov(x,h)=М(xh)–МxМh=0, и случайные величины некоррелированны. Однако они зависимы. Пусть x=1, тогда условная вероятность события {h=0} равна Р(h=0|x=1)=1 и не равна безусловной Р(h=0)=3/5, или вероятность {ξ=0,η=0} не равна произведению вероятностей: Р(x=0,h=0)=1/5¹Р(x=0)Р(h=0)=9/25. Следовательно, x и h зависимы.
Задача 8. Случайные приращения цен акций двух компаний за день и имеют совместное распределение, заданное таблицей:
| 1 | +1 |
1 | 0,3 | 0,2 |
+1 | 0,1 | 0,4 |
Найти коэффициент корреляции.
Решение.Прежде всего вычисляем M=0,30,20,1+0,4=0,4. Далее находим частные законы распределения и :
| 1 | +1 | p |
1 | 0,3 | 0,2 | 0,5 |
+1 | 0,1 | 0,4 | 0,5 |
p | 0,4 | 0,6 |
Определяем M=0,50,5=0; M=0,60,4=0,2; D=1; D=1–0,22=0,96; cov(,)=0,4. Получаем
.
Задача 9. Случайные приращения цен акций двух компаний за день имеют дисперсии D=1 и D=2, а коэффициент их корреляции =0,7. Найти дисперсию приращения цены портфеля из 5 акций первой компании и 3 акций второй компании.
Решение. Используя свойства дисперсии, ковариации и определение коэффициента корреляции, получаем:
.
Задача 10. Распределение двумерной случайной величины задано таблицей:
hx | 1 | 3 | 4 | 8 |
3 | 0,15 | 0,06 | 0,25 | 0,04 |
6 | 0,30 | 0,10 | 0,03 | 0,07 |
Найти условное распределение и условное математическое ожидание h при x=1.
Решение. Условное математическое ожидание равно
.
Из условия задачи найдем распределение составляющих h и x (последний столбец и последняя строка таблицы).
hx | 1 | 3 | 4 | 8 | Ph |
3 | 0,15 | 0,06 | 0,25 | 0,04 | 0,50 |
6 | 0,30 | 0,10 | 0,03 | 0,07 | 0,50 |
Px | 0,45 | 0,16 | 0,28 | 0,11 | 1 |
Поскольку , то условные вероятности находятся по формулам
,
,
а искомое условное математическое ожидание равно .
№1 Совместное распределение двух дискретных случайных величин X и Y задано таблицей.
Y = -1 Y = 3
X = 0 1/3
X = 2 1/4 ¼
Пусть Z = max(X,Y). Найдите Cov(X,Y), E(Z), var(Z).
№2 Непрерывная случайная величина X распределена равномерно на [-2,4], а непрерывная
случайная величина Y нормально с параметрами N(-1;2). Известно, что коэффициент корреляции
p(X,Y) = 0,5. Найти E(XY).
№3 Случайные приращения цен акций двух компаний за день имеют дисперсии var(X)=4 и
var(Y)=9, а их коэффициент корреляции равен 0,5. В каких долях следует разделить капитал при
вложении в акции, чтобы минимизировать риск?
№4 Акции двух компаний А и В имеют цены X и Y, распределённые по нормальному закону с
параметрами соответственно m(A) = 7, Var(X)=0,82 и m(В)=12, Var(Y)=0,25. При этом коэффициент
корреляции между ценами p(X,Y) = -0,41. Найдите математическое ожидание и дисперсию цены
портфеля, состоящего из 33 акций компании А и 9 акций компании В.
№5 Для независимых случайных величин X1, X2, X3, …, равномерно распределённых на отрезке
[2,8] найдите .