Внутри лампы накаливания находится вольфрамовая нить, та самая нить нагревается до экстремально высоких (2600 градусов Цельсия и более) температур под воздействием электрического тока.
Колба (стекло) нагревается от той самой вольфрама нити.
Температура нагрева колбы (стекла) зависит от длительности работы лампы накаливания, от условий в которых она эксплуатируется, а так же от мощности самой лампы.
Чем мощней лампа накаливания, тем до бОльших температур нагревается колбы.
Так колба лампы мощностью в 100 Ватт может нагреться до температуры в 290 градусов Цельсия и даже более.
Лампа мощностью 75 Ватт нагревается (стекло) до 250 градусов, лампа на 40 Ватт ориентировочно нагревается до 150 градусов и более, на 25 Ватт до 100 градусов и.т.д.
Такие лампы представляют определённую пожарную опасность и они должны находиться на определённом расстоянии до горючих материалов.
Такие лампы нельзя накрывать тканью, бумагой.
Из личного опыта могу добавить, колба (стекло) может выдержать значительные температуры, но то же стекло боится резких перепадов температур.
Если на разогретую колбу попадёт влага, то в лучшем случае колба почернеет вот таким образом
изнутри, лампа перегорит.
В худшем колба разлетится на мелкие соколки.
По этой причине нельзя лампу накаливания сразу же включать, если принесли её с мороза.
Такие лампы лучше не использовать в помещениях с повышенной влажностью, если и использовать, то нужен светильник во влагозащищённом корпусе.
Лампа накаливания — электрический источник света, в котором нить накала (спираль) нагревается до высокой температуры за счёт протекания через неё электрического тока, в результате чего излучается видимый свет. В качестве нити накала в настоящее время используется в основном спираль из вольфрама и сплавов на его основе (рис. 1).
Рис. 1. Изображение лампы накаливания
Во время работы лампы температура нити накаливания достигает
3000С0
. Спираль находится в стеклянном баллоне (колбе), из которой выкачивают воздух. Однако это приводит к испарению вольфрама с поверхности спирали и перегоранию спирали. Во избежание этого баллон лампы заполняют азотом или инертными газами — криптоном или аргоном, которые предотвращают разрушение нити накала.
Устройство лампы накаливания можно рассмотреть на рисунке 2, на нём также указаны некоторые составные части лампы: 1) стеклянная колба, 2) инертный газ, 3) нить накаливания, 4) контактный провод (соединяется с ножкой); 5) контактный провод (соединяется с цоколем); 6) держатели, 7) стеклянная ножка (лопатка), вывод контакта на цоколь, 9) цоколь лампы, 10) изоляционный материал, 11) контактный «носик».
Рис. 2. Конструкция лампы накаливания
Разработки электрической лампы освещения велись с начала (XIX) века.
(1802) — опыты В.В. Петрова с дуговой лампой освещения;
(1844) — Жан Бернар Фуко заменил электроды дуговой лампы из древесного угля электродами из ретортного угля;
(23) марта (1876) — патент Павла Николаевича Яблочкова (рис. 4) на «электрическую свечу» — угольные электроды в стеклянной колбе (рис. 3);
Рис. 3. Лампа Яблочкова П.Н. Рис. 4. Яблочков П. Н.
Первая лампочка с платиновой спиралью в стеклянной трубке создана Деларю в (1809).
(1870)-(1875) — работа русского отставного офицера Александра Николаевича Лодыгина (рис. 5, 6).
Рис. 5. Лодыгин А.Н. Рис. 6. Лампа Лодыгина А.Н.
В (1874) А.Н. Лодыгин получил русскую привилегию (авторское свидетельство) на лампу с последовательным горением угольных стержней. Это были первые лампы длительного действия — от (40) минут до сотен часов.
В (90)-х годах тело накала заменили вольфрамовой нитью. В (1900) году эти лампы демонстрировались на Парижской выставке.
Под руководством Томаса Эдисона (рис. 7) были разработаны система электрического освещения. Он изучал работы Лодыгина и Яблочкова и использовал талант молодых учёных для промышленного применения открытий. Патенты он оформлял на себя — требовались взносы для получения документов. Томас из богатой семьи голландских эмигрантов даже не получил начального образования. По историческим сведениям, Эдисон получил семейное образование и с (12)-летнего возраста уже зарабатывал, продавая газеты и журналы. Эдисон стал умелым предпринимателем.
Рис. 7. Томас Эдисон
В лампочке накаливания только
5%
потреблённой энергии превращается в свет, а остальная энергия преобразуется в тепло. К тому же, эти лампочки имеют малый срок службы и низкую световую отдачу. Более экономичными являются энергосберегающие (люминесцентные) лампы, которые более
70%
энергии преобразуют в свет, и светодиодные лампы.
Энергосберегающая (люминесцентная) лампа состоит из колбы, которая наполнена парами ртути и аргона, и пускового устройства — стартера. Внутренняя поверхность колбы покрыта специальным веществом — люминофором. При воздействии ультрафиолетового излучения на люминофор начинает излучаться видимый свет. Люминофор может создавать различные цвета светового потока, так как сам может иметь разнообразные оттенки. Компактная люминесцентная лампа представлена на рисунке 8.
Рис. 8. Изображение люминесцентной лампы
Она состоит из колбы с люминофорным покрытием, в которой содержатся пары ртути и впаяны нити накала, электронной пускорегулирующей аппаратуры, пластмассового корпуса и цоколя.
При одинаковой светоотдаче потребление электроэнергии лампами накаливания приблизительно в (5) раз больше, чем у люминесцентных ламп. Именно во столько раз различаются их мощности.
Применение светодиодных индикаторов и ламп позволяет сэкономить электроэнергию, увеличить безопасность и эргономичность приборов. Светодиодные лампы (LED-лампы) применяются для освещения жилых и производственных помещений, для уличной подсветки (рис. 9).
Рис. 9. Светодиодная лампа
Тепловое действие электрического тока впервые наблюдалось в
1801
году, когда током удалось расплавить различные металлы. Первое промышленное применение этого явления относится к
1808
году, когда был предложен электрозапал для пороха.
Способность электрического тока нагревать металлические проводники используется в промышленности и быту:
- сушуары, фены, сушилки для рук;
- утюги, отпариватели;
- чайники, бойлеры (водонагреватели);
- паяльники, электроплитки;
- промышленные фены, тепловые пушки;
- обогреватели воздушные и масляные;
- пароварки, мультиварки;
- кофемашины (паровые);
- стиральные машины (нагревание воды);
- дуговая сварка.
Нагревательный элемент — проводник с большим значением удельного сопротивления, высокой температурой плавления.
Формы проводников могут иметь вид спирали, плоской металлической полосы или тепловыделяющей поверхности.
В таблице удельных сопротивлений можно определить проводники, оптимальные для использования в нагревательных элементах.
Большим удельным сопротивлением обладает нихром (сплав никеля, железа, хрома и марганца). Существуют и другие материалы с большим удельным сопротивлением, например, фехраль (сплав хрома, алюминия, кремния, железа и марганца).
В качестве нагревательного элемента утюга используют ленту из нихрома или спираль, которая нагревает жароустойчивую керамику — керамические кольца, которые равномерно распределяют тепло на всю подошву утюга.
Источники:
Рис. 1. Указание авторства не требуется, бесплатно для коммерческого использования, Pixabay License, 2021-06-14, https://clck.ru/VVjNP.
Рис. 2. Автор: Created by Fastfission in Inkscape. — Власна робота, Суспільне надбання (Public Domain), https://commons.wikimedia.org/w/index.php?curid=763569.
Рис. 3. By Unknown illustrator — Fig. 499 at page 511 in Electricity in the service of man by Alfred Ritter von Urbanitzky, edited, with copious additions by Richard Wormell. Published by Cassell & Company (1886), Public Domain, https://commons.wikimedia.org/w/index.php?curid=19917066.
Рис. 4. By Unknown author — http://energomuseum.ru/persons/yablochkov_pavel_nikolaevich/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=47284646.
Рис. 5. By Unknown author — http://www.tstu.ru/en/tambov/tambov/tambov_img/imena_img/lodygin.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11845034.
Рис. 6. Public Domain, https://commons.wikimedia.org/w/index.php?curid=262583.
Рис. 7. Автор: Louis Bachrach, Bachrach Studios, restored by Michel Vuijlsteke — Это изображение из Библиотеки Конгресса США, отдел эстампов и фотографий (Prints and Photographs division), имеет цифровой идентификатор (digital ID) cph.3c05139.Эта пометка не указывает на правовой статус данной работы. Пометка о правовом статусе по-прежнему необходима. См. подробнее правила лицензирования Викисклада., Общественное достояние, https://commons.wikimedia.org/w/index.php?curid=9505005.
Рис. 8. Указание авторства не требуется, бесплатно для коммерческого использования, Pixabay License, 2021-06-14, https://clck.ru/VVo2d.
Рис. 9. By NGJ — Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6080786.
История изобретения лампочки
Спустя 70 лет в 1872 году Лодыгин А.Н. получил патент на лампу накаливания. В качестве спирали в ней был использован стержень ретортного угля, который находился под стеклянным колпаком.
Уже в 1880 году 10 мая лампочкой Лодыгина было обустроено уличное освещение в Санкт-Петербурге на Литейном мосту. Срок службы источника света составлял всего 2 месяца (пока не перегорал угольный стержень).
В 1880 году в США Томас Эдисон представил усовершенствованную лампу накаливания Лодыгина. Он сумел добиться устранения воздуха из стеклянной колбы, что обеспечило более длительное горение спирали и более яркое её свечение. Эдисон также разработал цоколь с резьбой для ввинчивания лампы в патрон.
В 1910 году было принято решение скручивать вольфрамовую нить в спираль для увеличения ресурса её службы. Таким образом, изделие теперь работает вместо первоначальных 50-100 часов целых 1000 ч.
Принцип теплового получения излучения используют и при производстве галогеновых ламп дневного света.
Итоги.
Лампы накаливания служили человеку верой и правдой на протяжении всего XX века. В нынешнем столетии на смену приходят светодиодные и люминесцентные осветительные приборы. В нашей стране в рамках борьбы за энергоэффективность приняты программы, которые стимулируют развитие производства более современных источников света. Многие россияне уже отказались от использования ламп накаливания в своих квартирах. Тем не менее, некоторые их достоинства неповторимы. Например, для фото- и кинопроизводства незаменима высокая цветопередача. Многие специальные осветительные приборы пока работают только по старой технологии. Кто-то просто бережет свои глаза и использует лампу Ильича. А для помещений с кратковременным включением света раз в неделю лампа накаливания и вовсе самый экономически обоснованный вариант. Выбор остается за конкретным потребителем!
- Похожие записи
- Лампы Эдисона: как устроена и где ее используют
- Виды ламп и освещения
- Все о светодиодах smd (параметры, проверка и пайка)
Из чего состоит лампа
- стеклянная колба грушевидной или округлой формы;
- тело накала (вольфрамовая или угольная нить), расположенное в ней на двух держателях-крючках;
- два электрода;
- предохранитель;
- ножка;
- цоколь (корпус) с изолятором;
- его контакт (донышко).
Окисление вольфрамовой нити (спирали, тела накала) исключается за счет её помещения в вакуум или газообразную среду. Ими наполняют стеклянную колбу.
Принцип работы электрической лампы накаливания
Рассмотрев, из чего состоит лампочка, важно понять и принцип её работы:
- При включении света через донышко цоколя к телу накала проходит ток.
- Вольфрамовая нить сильно разогревается после замыкания электрической цепи, что приводит к её свечению.
- На этот момент температура нити достигает 570 градусов.
- Таким образом спектр свечения лампочек сдвинут в сторону теплых температур.
Для справки: чем ниже градус вольфрамовой/угольной нити, тем ниже будет доля энергии, которая подходит к телу накала и провоцирует его видимое излучение. Ретро-лампы тем и отличаются, что медленнее и слабее прогревают спираль.
Принцип работы
Во время прохождения электрическим током через спираль, она быстро раскаливается до высоких температур почти до 2500 градусов. Это происходит из-за того, что спираль обладает высоким сопротивлением току и на прохождение его уходит большое количество энергии.
Тепло нагревает металл (вольфрам), и начинается свечение лампы. Поскольку внутри лампы нет кислорода, то вольфрам не окисляется.
КПД лампы накаливания 100 Вт старого образца, где роль тела накала играл стержень из угля, был намного меньше, чем у последних моделей. Это объясняется дополнительными расходами на конвекцию. Спиральные тела накала обладают более пониженным процентом таких потерь.
Разновидности световых элементов
- самые простые вакуумные (при их изготовлении из колбы отсасывается весь воздух);
- наполненные газом аргоном;
- ксенон-галогенные;
- наполненные криптоном.
По типу предназначения лампочки делят на такие виды:
- Декоративные. Работают по привычному принципу. Колба выполнена в виде свечи или шара.
- Общего назначения. Это знакомые всем обычные элементы, которые вкручиваются в люстру или бра. Часто мастера волнует вопрос, сколько ватт потребляет лампочка. Можно купить изделие на 40, 60, 90, 100, 120, 150, 200 и более Вт. Чем больше показатель, тем ярче будет свечение.
- Лампы для локального освещения. Конструктивно они ничем не отличаются от обычных элементов. Но рабочее напряжение для них находится в диапазоне 12-42 В.
- Лампочки для иллюминации. Имеют окрашенную в яркие цвета колбу. Рабочая мощность в диапазоне 10-25 Вт.
- Сигнальные. Имеют предельно низкую мощность и используются для светосигнальных устройств. На сегодняшний день такие изделия уверенно вытесняются современными светодиодными лампами.
- Прожекторные. Тело накала здесь укладывается особым образом за счет удобной её подвески в колбе. В результате удается достичь лучшей фокусировки свечения. Мощность таких ламп достигает 10-50 киловатт.
- Зеркальные. Имеют особое покрытие колбы. Она частично обтянута пленкой распыленного термическим способом алюминия. Таким образом удается добиться узкой направленности светового луча. Зеркалки применяются для устройства локального освещения.
- Транспортные. Эти изделия отличаются повышенной прочностью, устойчивостью к вибрациям. Для транспортных ламп используют специальные цоколи, благодаря которым можно быстро заменить осветительный элемент в стесненных условиях машины. Работают такие элементы от электросети авто 6-220 В.
- Изделия для оптических приборов. Сегодня почти не выпускаются. Ранее использовались для кинопроекторов, медтехники. Лампы такого типа имеют колбу особой формы.
- Коммутаторная лампочка. Относятся к классу сигнальных. Имеют малый размер колбы, что позволяет размещать их под кнопками панелей различных установок.
По количеству нитей накаливания все элементы бывают:
- Двухнитевые. Имеют одно тело накала для дальнего (сильного) света и одно – для ближнего (слабого) освещения. Используются в авто, авиации, ж/д светофорах, в звездах Московского Кремля.
- Однонитевые. Привычные лампочки с вольфрамовым телом накала.
Тело накала малоинерционных изделий имеет крайне тонкую спираль. Ранее они применялись для систем оптической записи звука. Существуют также нагревательные лампы, которые используют для устройства сушильных камер, электроплит, оргтехники и др.
Преимущества и недостатки
- приемлемую стоимость;
- компактные габариты;
- мгновенную реакцию на включение/выключение;
- отсутствие мерцания, неблагоприятно воздействующего на глаза;
- инертность к скачкам напряжения;
- мягкая гамма свечения, способствующая расслаблению, созданию атмосферы уюта;
- хороший индекс цветопередачи, равный Ra 90;
- работа в любых условиях (в том числе при высокой влажности);
- постоянная доступность для потребителя;
- экологичность;
- отсутствие шума при работе;
- инертность к ионизирующей радиации.
К недостаткам ламп накаливания относят такие моменты:
- хрупкость, чувствительность к механическим повреждениям;
- сравнительно малый срок эксплуатации;
- низкий КПД, не превышающий 5-7% (отношение расходуемой мощности к видимому излучению);
- пожарная опасность при прямом контакте лампы с горючими веществами (текстиль, солома и др.);
- вероятность взрыва при термическом ударе или разрыве спирали под напряжением.
Несмотря на все перечисленные недостатки, привычные лампочки уверенно сохраняют за собой занятые позиции. Более 70% населения СНГ все еще пользуются ими.
КПД и долговечность
Чем выше температура накала, тем большим будет КПД. Но при этом срок службы изделия снижается. К примеру, если повысить напряжение на 20%, яркость освещения станет сильнее — повысится КПД лампочки, однако срок эксплуатации сократится на 90-95%. Соответственно, снижение напряжения приводит к уменьшению коэффициента полезного действия изделия и увеличению срока его эксплуатации.
Характеристики
Для описания характеристики применяются названия показателя и его значение.
Данные характеристики приведены в таблице:
Наименование | Показатель |
Мощность, Вт | бытовое применение – 25-150Вт, другое – до 1000 |
Накаливание нити, градусов | до 2000-2800 |
Напряжение, В | 220-330 |
Световая отдача, Лм/1Вт | 9-19 |
Размер и маркировка цоколя | Е 14, Е 27, Е 40 |
Тип цоколя | Резьбовой, штифтовой |
Часы работы, часов | до 1000 |
Вес, г | 15 |
Заявленные часы работы выполняются при формировании оптимальных условий работы. Не допускаются частые включения, выключения.
Устройство и схема
Устройство лампочки накаливания у всех ее видов практически одинаковое:
- Основная рабочая деталь – вольфрамовая спираль. Обладает сопротивлением в три раза больше, чем медный материал. Из него достигается выплавка максимально тонких элементов. Электроды поддерживают данную спираль и переводят ток.
- Стеклянная колба. Она заполнена инертным газом. Именно он не дает сгореть нити и препятствует окислению металлических элементов.
- Цокольная часть. Она присутствует во всех видах, кроме автомобильных. По цоколю нарезана резьба, ее шаг может отличаться у каждого вида.
Подробная схема составляющих отображена на рисунке:
Принцип действия
Принцип работы лампы накаливания заключается в нагревании вещества, через который протекает ток. Веществом выступает сама нить накаливания, ее температура нарастает в момент замыкания электроцепи. При этом возникает результат электромагнитного термического испускания. Видимым для глаза оно становится при прогревании более 570 градусов, при этом начинается красное свечение.
Нить накаливания нагревается до 2800 градусов. В процессе прогревания вольфрам преобразовывается в оксид (белый поверхностный налет), для этого и происходит закачка в полость нейтральных газов. При монтаже лампочки (закручивания ее в патрон), замыкается цепь и происходит процесс разогрева нити, и происходит подача света.
Цоколь
Распространенными считаются лампочки с маркировкой цоколя E14, E27, E40. Где цифра означает диаметр самого цоколя. Без резьбовые элементы встречаются в автомобильных производствах.
Есть страны, где другое напряжение в сети и, соответственно, применяются лампочки с другим диаметром цоколя – Е12, Е17, Е26, Е39.
Маркировка
Перед покупкой надо изучить маркировку. Она представлена буквенным и цифровым сочетанием. Буквенная маркировка и значение представлены в таблице:
Буквенная маркировка | Значение |
Б | биспиральная |
БО | Биспиральная с опаловой колбой, наполненной аргоном |
БК | Биспиральная, наполнение колбы криптоном |
ДБ | Диффузная с матированием внутри колбы |
В | Вакуумная |
Г | Газонаполненная |
О | Опаловая колба |
М | Молочная колба |
Ш | Шаровидная |
З | Зеркальная |
МО | Для местного освещения |
Цифры указывают на пределы напряжения, мощности.
Коэффициент полезного действия
У данных ламп низкий КПД (коэффициент полезного действия). Он выражается соотношением мощности излучением, заметным человеку. При прогревании нити до 2700 К, КПД до 5 процентов. Остальная энергия затрачивается на инфракрасное излучение, которое не просматривается человеческим глазом, только чувствуется теплом. Если повышать КПД хотя бы до 20 процентов, необходимо увеличить прогревание нити до 3400 К.
Свет при этом будет светить в два раза ярче, но срок службы лампы сократится на 95 процентов. И наоборот, снижение напряжения, увеличит период работы во много раз. Все это учитывается при производстве дежурного освещения, которое требует надежности.
Таблица соотношения люменов и ватт в лампочке
Световой поток измеряется в люменах (Лм). В светодиодах световые потоки колеблются в зависимости от производителя, его качества товара, напряжения. Примерное значение для одного Вт составляет 80-150 Лм. В таблице приведено соотношение Лм и Вт для лампочек накаливания по отношению к светодиодной лампе:
Светодиодная лампа, Вт | Лампа накаливания, Вт | Световой поток, Лм |
4-5 | 40 | 400 |
8-10 | 60 | 700 |
10-12 | 75 | 900 |
13-15 | 100 | 1200 |
Как увеличить срок службы лампы накаливания
- Учитывать диапазон напряжений. Его указывают на колбе изделия. Как правило, он равен 125-135 Вт, 220-230 Вт, 2,3-2,4 кВт. При превышенном напряжении в доме изделие будет перегорать скорее. К примеру, в квартире максимальное напряжение 220 В, а лампа куплена с диапазоном 125-135 В. Здесь нить накала перегорит однозначно быстрее, поскольку увеличивается КПД изделия.
- Устранить неисправность патрона. Если лампы перегорают часто, стоит осмотреть его, перепроверить контакты. При необходимости патрон меняют.
- Исключить вибрации. Они приводят к быстрому перегоранию вольфрамовой нити. Поэтому перенос мобильных светильников лучше выполнять с выключенной лампочкой.
Для продления срока службы лампы накаливания можно снизить напряжение в сети всего на 7-8%. В этом случае изделие проработает дольше в 3-3,5 раза при экономном расходе электроэнергии.
Виды ламп
Лампы накаливания подразделяются на несколько видов:
- вакуумные;
- аргоновые либо азотно-аргоновые;
- криптоновые;
- галогенные с подключенным отражателем инфракрасного света внутри лампочки, что повышает КПД;
- с покрытием, необходимым для преобразования инфракрасного света в видимый спектр.
Общего, местного предназначения
Характеристики ЛН общего предназначения прописаны в ГОСТе 2239-79. Эти лампочки используются для подключения в светильники основного освещения бытовых и общественных мест, а также уличного пространства.
Основное напряжение может быть 127 и 220 В. Ассортимент изделий делится на группы в зависимости от типов тела накала (спираль либо биспираль) и среды (вакуумные, газовые).
Форма сосуда, метод установки, марка изделия и вид цоколя подбираются из соображений стоимости, практичности технологи, минимум на 100 часов работы. Нужно подчеркнуть, что в последние годы эффективность таких ламп оценивается по множеству характеристик.
Вам это будет интересно Описание и разновидности ламп
ЛН местного предназначения, выпускается под ГОСТом 1182-78, напряжение не должно быть выше 36 В, а для производственных помещений, где есть легкогорючие вещества — 12 В. Мощность лампочек местного назначения ограничена и будет 15, 25, 40 и 60 Вт. Время службы каждой лампы накаливания должен быть не меньше 75% средней продолжительности свечения.
Для уличного освещения берутся более мощные лампы, чтобы не приходилось каждый месяц-два менять их. Так как это достаточно трудоемкий процесс.
Декоративные
Декоративные лампочки могут быть различных форм, круглые, овальные, спиральные и так далее. Источником излучения будет вольфрамовая нить. С помощью него в помещении получается уютный и теплый свет. В основном на фабрике производят дизайнерские изделия под классический цоколь Е27, но бывают модели под цоколь Е22 и Е40. Напряжение необходимое для корректной работы составляет 220 В. Срок использования декоративных изделий с вольфрамовой нитью может быть в диапазоне 2000-3400 часов, но не больше. Температура освещения характеризуется параметром 2700 К.
Такие изделия часто используют для украшения помещений, лестничных пролетов или новогодних елок. Большие торговые центры используют декоративные лампочки подвешенные к высокими потолкам. Выглядит это поистине красиво и в то же время уютно. Они будут гармонично сочетать со стилем Лофт в доме или квартире.
Иллюминационные
Эти лампы накаливания производятся с цветным внутренним слоем колбы и необходимы для новогодних гирлянд или подсветки лестниц, магазинов и витрин. Имеет большой спектр цветности, присутствуют холодные, белые, дневные и ночные оттенки. Достаточно высокий срок службы до 25000 часов, при правильной эксплуатации. Основным минусом будет тяжелая установка. Чем ближе конец срока изделия, тем слабее оно будет работать. Свет начнет плохо рассеиваться.
Сигнальные
Сигнальные лампочки в основном используются в разной промышленности. Простота устройства и большой модельный ряд помогают выбрать изделия для работы в разных сферах производства. Лампы можно монтировать на станки, пульт управления, на специальный транспорт и так далее. Очень часто используются в машиностроении, деревообработке или металлургии.
Внимание! Можно подключить одну лампочку для выполнения нескольких операций, либо применять одновременно 2-3 изделия различного предназначения. Исходя из сферы использования, выбирается цвет и форма лампы.
Современные лампы накаливания производятся специально для использования в промышленных целях, что дает рядом плюсов перед обычными лампами световой сигнализации:
- разнообразные цветовые режимы, дающие более информативную сигнализацию;
- множество выборов плафонов;
- подходят под любую электросеть;
- легкая установка на станки при помощи системы винтового подсоединения;
- возможность заменять контакты;
- применение светодиодных лампочек повышенной яркости для улучшения обзора на любых промышленных территориях;
- удобный корпус с возможностью подбора нужного размера;
- энергосбережение;
- легкость в использовании.
Зеркальные
Изделие зеркального типа отличается от других ЛН редкой формой колбы, а также наличием покрытия с отражением света, которое похоже на тонкую фольгу.
Это покрытие распыляется на лампу для того, чтобы рассеять ее световое излучение в помещении, чтобы более правильно распределить его в пределах определенной точки, чтобы была возможность четко осветить определенное помещение.
Чтобы получить такую опция в обычной лампе, необходимо поставить позади нее большой отражатель света.
Зеркальные лампочки в основном подключают в светильники направленного излучения, используемые для точечного освещения магазинов, чтобы получилась подсветка необходимых зон. Также их используют для офисов, лестниц, памятников архитектуры.
Зеркальные лампы могут быть разноцветными и прозрачными, матовыми, либо с эффектом УФ лучей. Их производят все известные фабрики осветительных приборов.
Транспортные
В качестве освещения для машин применяют транспортные лампы накаливания. В электрической цепи нить накала тела разогревается и на пике температуры начинается свечение. Энергия светового луча, воспринимаемого обычным глазом, будет небольшой. Основная масса энергии будет в виде тепла.
Транспортная лампа имеет в своем составе колбу, несколько нитей накала, цоколь и выводы.
Вам это будет интересно Особенности металлогалогенных ламп
Тела накала в двухнитевых изделиях могут работать по-разному. Двухнитевыми лампочками оснащены автомобильные фары, светильник в салоне.
Нить накала обязательно выдерживают повышенные температуры, а также достаточно маленькая. Поэтому ее производят из вольфрамовой проволоки среднего размера, завитой в вытянутую спираль.
Спираль подсоединяется к электродам и в основном имеет форму прямой линии или дуги полукруга. Температура плавления вольфрама будет около 4000 градусов. Во время работы спираль греется до показателей 2500-2800 °С. С увеличением температуры вольфрама повышается яркость и световая эффективность лучей на ЛН. Но если показатели перевалили за 2500 °С вольфрам будет быстро испаряться и, оставаться на стенках стеклянного сосуда, из-за чего получается слой налета, который уменьшат качество освещения. Срок службы таких изделий обычно составляет от 4 месяцев до полугода. Зависит от производителя и качественности производственного сырья.
Двухнитевые
Такое изделие может быть трех видов:
- для машин. Одна нить применяется для ближнего света, вторая — для дальнего. Если говорить о лампах для задних сигналов, то нити могут применяться для стоп-сигнала и габаритного света такие же. Дополнительный экран будет убирать лучи, которые в сигнале ближнего света могут ослепить владельцев встречных машин;
- для воздушного судна. В посадочной фаре первая нить применяется для малого освещения, вторая — для большого, но если вторая слишком долго работает, то может понадобиться охлаждение, иначе может произойти возгорание;
- для светофоров нажелезной дороге. Обе нити нужны для увеличения надежности— если сгорит одна, то будет работать другая.
Те лампочки, которые установлены в наших настольных лампах или люстрах принято называть лампами накаливания. Сейчас они считаются самыми старыми, даже устаревшими разновидностями лампочек, но всё равно широко используются в нашей повседневной жизни.
Когда мы случайно дотрагиваемся до лампочки в торшере или хотим выкрутить перегоревшую, то ощущаем, что стекло очень горячее. Иногда мы можем даже обжечься, а иногда тепло лампочек способно расплавить лёд и даже поджечь бумагу или ткань! Почему же так происходит? Почему нагреваются лампочки?!?
Почему лампочка горячая
Прежде чем ответить на вопрос, почему же нагревается лампочка, необходимо разобраться, как устроен этот источник света. Ведь нагревание происходит как раз из-за особенностей её строения.
Если внимательно посмотреть на лампочку накаливания (ещё в нашей стране её называют «лампочкой Ильича»), то можно увидеть прозрачный стеклянный желобок прямо посредине. С двух сторон от желобка (стеклянной колбы) располагаются два тонких металлических усика. Наверху между собой они соединены пружинкой, которая называется спиралью накаливания.
Кстати, воздуха внутри лампочки нет! Оттуда специально откачивают воздух, а иногда пространство заполняют нейтральным газом (аргоном или ксеноном) для того, чтобы прибор работал лучше и дольше.
Так почему же лампочка горячая? Ответ прост: потому что свет — горит! Именно поэтому летом, когда солнце светит, нам жарко.
В лампочке нагревание происходит как раз из-за пружинки, которая изготовлена из специального металла — вольфрама.
Как это происходит? Электрический ток по маленьким тонким усикам проходит по вольфрамовой спиральке, из-за чего она сильно раскаляется, ведь ток течёт очень-очень быстро. Вспомните: когда вы бегаете, вам тоже жарко, потому что кровь быстро-быстро начинает течь по нашим сосудам.
По тому же принципу работает и ток. Из-за своей скорости он раскаляет спираль из вольфрама, которая становится горячей. Если бы внутри лампочки был воздух, спиралька обязательно бы испортилась и вышла из строя. Но так как воздуха внутри лампы накаливания нет, а нейтральный газ никогда ни с кем не вступает в контакт или химическую реакцию, спираль просто становится очень горячей и нагревает стекло лампочки, которое пропускает через себя и жар, и свет. По этой причине хвататься за горящую лампочку накаливания очень опасно: можно прилично обжечь пальцы.
Вольфрамовая нить в лампе накаливания
Секрет того, почему лампочка горячая, как было сказано, кроется в вольфрамовой нити-пружинке. Оказывается, именно она отдаёт лампочкам столько тепла. Если бы спираль изготавливалась из других материалов, скорее всего, наши приборы либо не светили вообще, либо светили бы очень блеклым светом. А все потому, что вольфрам — уникальный материал!
Когда люди получили этот металл, они даже не знали, для чего его можно использовать. Ведь он был очень тяжёлым и плохо плавился. Обычное железо плавится при температуре 1538 градусов Цельсия, а для того, чтобы расплавить вольфрам, нужно было 3410 градусов! Получается, даже при очень высоких температурах этот материал остаётся прочным и твёрдым.
В конце концов изобретатели нашли вольфраму применение. Этот материал отлично подошёл для производства лампочек! Получилось здорово: в домах людей начал появляться свет. А всё благодаря тому, что ток переходил по вольфрамовым пружинкам и не плавил их, создавая и освещение, и тепло.
Даже самая тоненькая пружинка из вольфрама способна выдержать сильный нагрев. Поэтому из 1 кг вольфрама изготавливают примерно 2 тысячи лампочек накаливания.
Что происходит, когда лампочка перегревается
Несмотря на прочность вольфрамовой пружинки, иногда случается так, что и она перегревается. В этом случае дотронуться до лампочки почти невозможно — она просто пылает жаром.
Кстати, именно так и определяется момент, когда лампочка выходит из строя. Как правило, лампочка накаливания, которая работает правильно, может быть тёплой или горячей, но не обжигающей.
Когда ток по вольфрамовой пружинке течёт так стремительно, что температура внутри неё критически повышается, спиралька лопается — и свет гаснет. Именно так перестаёт работать лампочка. И если присмотреться к погасшему прибору, можно заметить, что пружинка прикреплена уже только к одному металлическому усику, а не к двум, как раньше.
Сейчас лампы накаливания считаются очень старым типом освещения. Люди переходят на более современные лампы (светодиодные, люминесцентные). Они дольше служат, светят ярче, а ещё не нагреваются, поскольку снабжены не обычным стеклом, а специальным, поглощающим тепло.
Обновлено: 21.03.2023
Если вы заметили, что лампы в светильниках ощутимо нагреваются или просто часто выходят из строя, а главное если подозреваете, что причиной тому высокая температура — то этот материал специально для вас.
Мы рассмотрим 5 основных причин перегрева ламп, способы диагностики и борьбы с ними.
В первую очередь, я хочу рассказать о нормальных температурах, при которых могут работать лампы различного вида:
Рабочие температуры ламп:
— Накаливания – в зависимости от мощности температура может превышать 200 oС
— Галогеновые – нагреваются даже сильнее ламп накаливания, более 250-300 oС
— Люминесцентные — ~70 oС
— Светодиодные LED – ~60 oС
Конечно, точные температуры сильно зависят от многих факторов, в частности от мощности, но общее понимание эти показатели дают.
Важно знать, что светодиодные и люминесцентные лампы при работе нагреваются незначительно, до бытовых моделей можно дотронуться рукой, даже если они долгое время были включены. А галогенные и лампы накаливания, из-за принципа работы, прямо раскаляются. Из-за этого они имеют ограничения по местам и способам установки.
Несмотря на значительно различающиеся температурные режимы, каждому из этих видов вредит чрезмерный нагрев, сверх расчетных значений.
Объяснение этому простое, неважно рассчитана лампа на максимальную температуру +50 градусов или +500 oС, превышение этих температур одинаково вредят обеим.
Главным последствием перегрева является значительно сокращающийся срок службы и внезапный выход ламп из строя. Так как повышенные температуры разрушают их структуру, изменяют химический состав и физическое состояние элементов, всё это в целом приводит к раннему перегоранию лампочек.
Именно перегрев является одной из 7 основных причин, по которым лампочки сгорают, подробнее про остальные 6 факторов, читайте ЗДЕСЬ.
Почему перегреваются лампы – 5 основных причин
1. Дефект или заводской брак
Первой, самой простой причиной перегрева ламп при работе и быстрого их выхода из строя, является заводской брак или дефект.
Если при производстве были нарушены технологии изготовления или использованы не те материалы – это обязательно скажется на работе. Один из симптомов этого — перегрев.
Определить, что именно производственный брак стал причиной перегорания лампочки от нагрева – не всегда просто, особенно если проблема проявляется не сразу.
Если предыдущая лампа отслужила на этом же месте в светильнике весь положенный срок, а новая быстро перегорела, то высока вероятность, что вам попался бракованный экземпляр.
Нередко, от этого страдает целая партия. И вы, купив набор освещения для всей квартиры, можете безуспешно искать причину быстрого выхода из строя, хотя ответ простой – бракованные лампы.
Поэтому всегда проверяйте лампочки при покупке. Практически все современные электротехнические или строительные магазины, имеют стенд для проверки под любой цоколь.
В первое время после покупки и монтажа наблюдайте за работой новых ламп. Не оставляйте включенными светильники с ними на ночь или в своё отсутствие. Погоняйте их под нагрузкой в выходной день или вечером, когда все дома бодрствуют, чтобы убедиться, что они правильно функционируют.
2. недостаточный отвод тепла от светильника
Перегрев лампы и выход её из строя в связи с плохим отводом тепла часто случается, когда устанавливается лампочка большей мощности, чем должна быть по инструкции. Это усугубляется если плафон, сам светильник, способ и место его установки не обеспечивают достаточное охлаждение, препятствуя вертикальному движению воздуха.
Как вы знаете из школьного курса физики, теплый воздух поднимается вверх. Если по какой-то причине, например, из-за конструкции люстры или бра, тепло от лампы не уходит, а скапливается в плафоне, то со временем общая температура значительно повысится, т.к. тепло не будет эффективно рассеиваться, и лампочки начнут перегреваться.
Каждый светильник, при производстве, в зависимости от его конструкции, материалов изготовления и места установки, рассчитывается под определенный тип лампы, под определенный температурный режим работы.
Бывает так, что инструкцией предписывается необходимость устанавливать лампы накаливания мощностью до 50 Вт. А вы, желая чтобы устройство давало больше света, вкручиваете лампы на 100 Вт. При этом, соответственно, выделения тепла увеличиваются практически в два раза. Дальше есть два основных варианта: или сплавится плафон светильника, или, если он устойчив к высоким температурам, перегреется и сгорит лампа.
Как определить, что перегрев лампы вызван недостаточным отводом тепла
То, что горячий воздух плохо уходит от светильника, можно достаточно легко ощутить. Обычно, от плафона идёт жар, он нагревается сам и всё вокруг себя. Если вы заметили, что в одном из устройств периодически перегорают лампочки — просто понаблюдайте за ним под нагрузкой.
В начале статьи я указывал температуры нормальные для разных типов ламп. Если в вашем светильнике происходит ощутимо больший нагрев, а это можно определить термометром, тепловизором или просто поднеся к работающему долгое время светильнику руку или аккуратно дотронувшись до плафона (помните, что, например, галогенные лампы могут достигать температур более 300 градусов, их касаться нельзя), необходимо начать бороться с плохим теплоотводом.
Что делать, если лампы сгорают из-за перегрева от недостаточного отвода тепла
В первую очередь, необходимо четко следовать инструкциям производителя по типам и главное мощности ламп, допустимым к установке. Замените их на менее мощные, используйте современные светодиодные модели. У светильников не должно быть препятствий для вертикального движения воздуха, что позволит выводить тепло более эффективно. Это можно регулировать и положением плафона, выбором более удачного места установки, либо, если это потребуется, созданием дополнительных вент. отверстий, проверкой и чисткой существующих.
3. Нагрев элементов лампы из-за плохих контактов
Нередко лампы нагреваются из-за плохого прилегания их цоколя с контактными площадками патрона или разъема светильника, либо ненадёжного соединения электрических проводов.
Физически, объяснение этого эффекта достаточно простое: при повышении сопротивления прохождению электрического тока, из-за некачественного контакта, растет и температура в этой зоне. Это, в конечном итоге, приводит к перегреву самой лампочки, если раньше не разрушается контактная группа или разъем.
Обычно, при перегреве ламп, я советую в первую очередь проверять вероятность именно этой проблемы. Нужно выкрутить лампочки, осмотреть их. Также внимательно обследовать разъем светильника и места соединения электрических проводов.
Главным и основным показателем нагрева контактов является нагар или налёт, которые препятствуют прохождению электрического тока. Такие места соединений будут выглядеть подгоревшими, или будут видны следы окисления. Все такие токопроводящие части необходимо тщательно зачистить, удалив нагар.
Нередко, со временем, ослабевают и прижимные контакты. Так, если изначально сильно закрутить в патроне лампу, контакты в патроне будут прижаты. Когда будете менять её на новую, и затяните её не так сильно, то такой контакт перестает быть надежным и будет греться. Поэтому старайтесь качественно затягивать лампочки с резьбовыми цоколями.
Всегда проверяйте, что подпружиненные контакты не просевшие или не продавленные. Их необходимо вернуть в начальное положение – отогнуть, чтобы при установке лампы обеспечивался надёжный контакт с цоколем.
Обязательно периодически осматривайте контактные площадки и места креплений проводов. Они должны быть надёжно затянуты, не допускается люфта и следов гари.
4. Повышенное напряжение в сети
Если в электрической сети повышенное напряжение, это обязательно вызовет больший нагрев ламп. Обычно от этого страдают лампочки накаливания и галогенные. В них нить накала или спираль, при прохождении тока с высоким напряжением, больше раскаляется, нагревая всё вокруг.
Современные светодиодные (LED) лампы, в корпусе которых встроен драйвер, от повышенного напряжения сети тоже перегреваются. В основным за счет нагрева элементов драйвера, а не светящегося диода.
Люминесцентные лампы от высокого напряжения напрямую не перегреваются. У таких светильников вспомогательные электронные компоненты, необходимые для работы, располагаются отдельно. Именно они берут проблемы сети на себя, это или балласт – ЭПРА или дроссель. На лампу, после них, подаётся электрический ток уже с нужными характеристиками.
Как определить, что на лампы поступает повышенное напряжение
В первую очередь, проблемы с напряжением напрямую отражаются на уровне свечения лампочек накаливания или галогенных. При повышенном – они будут светить ярче, при пониженном тусклее.
Обычно, высокое напряжение непостоянно, чаще происходят скачки, и вы обязательно заметите изменение интенсивности свечения. Это видимый сигнал, что есть какие-то проблемы с электросетью.
У источников света других типов, высокое напряжение проявляется нагревом электронных компонентов, установленных до них – блоков питания драйверов, стартера, балласта ЭПРА, дросселя и т.д.
Проще всего, в случае сомнений, достаточно замерить реальные показатели электрической сети. Как легко измерить напряжение самому с помощью мультиметра и вообзе как им пользоваться я рассказывал совсем недавно.
Если окажется, что у вас действительно высокое напряжение – лучше сразу обращаться к обслуживающей электросети дома организацию – Управляющую Компанию, ЖЭУ и т.д. Нередко к этому приводят серьезные, системные проблемы, справится с которыми своими силами вы вряд ли сможете.
5. Дополнительный нагрев светильника от соседних устройств и электроприборов.
Нередко, к недостаточной вентиляции плафона светильника, добавляется и его дополнительный нагрев от соседних электроприборов или отопительных систем. Что, в конечном итоге, приводит к перегреву ламп и их выходу из строя.
Физика этого процесса, я думаю, понятна всем. Но почему-то не всегда при монтаже светильника эта проблема бывает очевидна, до момента пока не начнут регулярно перегорать лампы.
Определить то, что светильник подвергается дополнительному нагреву от соседних устройств, электроприборов или элементов систем отопления, довольно просто.
Достаточно внимательно осмотреть место установки ламп, на предмет наличия вблизи любых источников повышенной температуры. Уже при визуальном контроле станет понятно, насколько сильно такое взаимодействие и какого его влияние на светильник.
Для исправления этой проблемы требуется либо убрать воздействие другого источника выделения тепла, например:
— переустановив светильник в другое место;
— обеспечить лучшее проветривание и отвод тепла от этого места;
Как видите, причин, которые могли бы привезти к перегреву ламп не так и много. Помните, что некоторые лампы – особенно галогенные, сами по себе достаточно сильно нагреваются и высокая температура их нормальное состояние. Это необходимо учитывать при выборе места и способа установки светильников с такими лампочками.
Перегрев опасен не только возможным быстрым выходом их из строя, намного страшнее вероятность возникновения пожара, которую также нельзя исключать. Поэтому, если вы обнаружили один из описанных выше симптомов внештатной работы ламп, их чрезмерного нагрева выше допустимых рабочих температур – обязательно примите меры, замените дефектную лампу, либо устраните причины, вызывающие это.
На сегодняшний момент, самый идеальный вариант – это использование светодиодных ламп, по своей стоимости они уже практически сравнялись с лампочками других типов, но по остальным характеристикам во многом их опережают. В частности, нагреваются они во время работы меньше.
Если же вы знаете другие распространенные причины перегрева – не стесняйтесь, пишите их в комментариях к статье, это будет полезно многим.
Обычная лампа накаливания, до какой температуры нагревается колба лампы и от чего это зависит.
Внутри лампы накаливания находится вольфрамовая нить, та самая нить нагревается до экстремально высоких (2600 градусов Цельсия и более) температур под воздействием электрического тока.
Колба (стекло) нагревается от той самой вольфрама нити.
Температура нагрева колбы (стекла) зависит от длительности работы лампы накаливания, от условий в которых она эксплуатируется, а так же от мощности самой лампы.
Чем мощней лампа накаливания, тем до бОльших температур нагревается колбы.
Так колба лампы мощностью в 100 Ватт может нагреться до температуры в 290 градусов Цельсия и даже более.
Лампа мощностью 75 Ватт нагревается (стекло) до 250 градусов, лампа на 40 Ватт ориентировочно нагревается до 150 градусов и более, на 25 Ватт до 100 градусов и.т.д.
Такие лампы представляют определённую пожарную опасность и они должны находиться на определённом расстоянии до горючих материалов.
Такие лампы нельзя накрывать тканью, бумагой.
Из личного опыта могу добавить, колба (стекло) может выдержать значительные температуры, но то же стекло боится резких перепадов температур.
Если на разогретую колбу попадёт влага, то в лучшем случае колба почернеет вот таким образом
В худшем колба разлетится на мелкие соколки.
По этой причине нельзя лампу накаливания сразу же включать, если принесли её с мороза.
Такие лампы лучше не использовать в помещениях с повышенной влажностью, если и использовать, то нужен светильник во влагозащищённом корпусе.
Лампы накаливания существуют уже довольно давно, но вы можете не знать, что они работают на сложных принципах электродинамики и термодинамики.
До эпохи электрического освещения было довольно проблематично добиться яркого и долговечного освещения. Единственными доступными вариантами были свечи и масляные лампы, которые не очень эффективно справлялись со своей задачей.
Придуманные и запатентованные Томасом Альва Эдисоном в 1800-х годах, лампы накаливания продолжают освещать наш мир на протяжении многих поколений.
Фотография лаборатории лампочек Томаса Алвы Эдисона, Детройт, сделанная в 1979 году
Лампы накаливания стали настолько популярны, что оригинальная технология не претерпела никаких радикальных изменений. Интересно отметить, что такая незначительная (но в то же время критически важная!) часть нашего существования основана на важных аспектах физики.
В этой статье мы найдем ответы на некоторые общие вопросы, касающиеся ламп накаливания.
Как образуется свет в лампах накаливания?
Лампа накаливания в основном состоит из двух частей — колбы и нити накаливания.
Колба, как правило, изготовлена из стекла, внутри которого находится вакуум. Вакуум помогает продлить срок службы лампочки; если внутри лампы присутствуют частицы воздуха, она быстро нагреется, и стекло может легко лопнуть.
Нить накаливания внутри лампочки — это место, где собственно и производится свет. Она сделана из длинного и намотанного материала, который является хорошим проводником электричества, например, вольфрама. Иногда внутренняя часть лампочки также заполняется инертным газом, например, аргоном. Инертные газы помогают замедлить процесс изнашивания вольфрамовой нити.
Конструкция лампы накаливания. На схеме: 1 — колба; 2 — полость колбы (вакуумированная или наполненная газом); 3 — тело накала; 4, 5 — электроды; 6 — крючки-держатели тела накала; 7 — ножка лампы; 8 — внешнее звено токоввода, предохранитель; 9 — корпус цоколя; 10 — изолятор цоколя (стекло); 11 — контакт донышка цоколя.
Нить накала прикреплена к металлическим контактам, которые подключены к источнику питания, чтобы через них мог проходить электрический ток.
Когда электрический ток проходит через нить накала, атомы возбуждаются, и электроны в них переходят на более высокие энергетические уровни, как только они поглощают энергию от протекающего тока. Время, в течение которого электроны остаются в этом возбужденном состоянии, очень мало, и когда они возвращаются к своим исходным уровням энергии, дополнительная энергия высвобождается в виде фотонов (небольших пакетов световой энергии).
Таким образом, лампочка светится!
Почему лампочки нагреваются?
Здесь следует учитывать один важный момент: нить накаливания лампочек сгорает, чтобы произвести свет. Это означает, что электрический ток, проходящий через нить, нагревает ее до такого уровня, что она начинает излучать фотоны. При перемешивании и вибрации атомов в материале нити накаливания выделяется тепловая энергия.
Большая часть электрического тока, проходящего через лампочку, используется для возбуждения атомов. При этом выделяется тепловая энергия, но лишь небольшая часть этой электрической энергии преобразуется в свет.
Кроме того, внутренняя часть лампочки не полностью герметична, и частицы воздуха передают тепловую энергию стеклу. Инертный газ внутри лампочки также проводит тепловую энергию к стеклу. Поэтому, когда вы прикасаетесь к лампочке, которая светится долгое время, то оказывается, что она горячая.
По этой причине нить накаливания рано или поздно разрушается, поэтому лампы накаливания служат недолго.
Следовательно, можно сказать, что лампа накаливания не особенно эффективно преобразует электрическую энергию в световую, растрачивая энергию в виде тепла.
Благодаря вечной жажде человечества к лучшим вариантам, у лампы накаливания появились лучшие конкуренты — галогенная лампа, люминесцентная лампа и светодиодная лампа (LED).
Эти разные виды ламп работают по разным механизмам, при которых потери энергии в виде тепловой энергии меньше, а значительная часть электрической энергии преобразуется в световую. Они экономичны, долговечны и более энергоэффективны.
Галогенные лампы — это усовершенствованная версия ламп накаливания, в которых вольфрамовая нить заключена в кварцевую капсулу в форме колбы, заполненную смесью инертного газа и небольшого количества галогенов, таких как йод или бром. «Галогенный цикл» повторно помещает частицы вольфрама в нить накаливания, позволяя использовать их повторно и эффективно продлевая срок службы лампы.
В люминесцентных лампах используется принцип флуоресценции, когда пары ртути заряжаются электрическим током, проходящим через лампу. Находящиеся под напряжением пары ртути испускают ультрафиолетовое излучение на люминофорное покрытие на внутренних стенках колбы, заставляя ее излучать световую энергию. Они примерно в четыре раза эффективнее и в десять раз долговечнее ламп накаливания.
Светодиодные лампы излучают световую энергию при пропускании через них электрического тока в прямом направлении . Они сделаны из светодиодов, которые состоят из полупроводникового материала. Это самый энергоэффективный вариант на рынке.
На пути к энергоэффективному будущему
С истощением энергетических ресурсов мир изо всех сил старается сохранить их и перейти к более устойчивым решениям. Лучшим вариантом искусственного освещения, который можно выбрать, является светодиодное освещение, благодаря многочисленным преимуществам, которые оно имеет по сравнению с другими традиционными методами освещения. Светодиодные лампы излучают незначительное количество тепловой энергии, служат до 25 000 часов и доступны в различных цветах.
Будущее бытового и коммерческого освещения очень яркое, благодаря гениальным изобретателям человечества, которые всегда находятся в поиске новых технологий!
Лампа накаливания (ЛН) — электрический источник света, светящимся телом которого служит так называемое тело накала (ТН, проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления ТН в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX — первой половине XX в. ТН изготавливалось из более доступного и простого в обработке материала – углеродного волокна. (Приложение 2. Устройство лампы накаливания).
Принцип действия. В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока (тепловое действие тока). Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 5770 K (температура поверхности Солнца). Чем меньше температура, тем меньше доля видимого света и тем более красным кажется излучение.
В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине ТН помещено в колбу, из которой в процессе изготовления ЛН откачиваются атмосферные газы. Наиболее опасными для ЛН являются кислород и водяные пары, в атмосфере которых происходит быстрое окисление ТН. Первые ЛН изготавливали вакуумными; в настоящее время только лампы малой мощности (для ЛОН — до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ЛН наполняют газом (азотом, аргоном или криптоном). Повышенное давление в колбе газополных ламп резко уменьшает скорость разрушения ТН из-за распыления. Колбы газополных ЛН не так быстро покрываются тёмным налётом распылённого материала ТН, а температуру последнего можно увеличить по сравнению с вакуумными ЛН. Последнее позволяет повысить КПД и несколько изменить спектр излучения.
КПД и долговечность. Почти вся подаваемая в лампу энергия превращается в излучение теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет 5%.
С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95%.
Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.
Преимущественная часть износа нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода плавные пускатели. Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной. (Приложение 3. Светоотдача и КПД).
Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности. Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.
Преимущества и недостатки ламп накаливания.
1. Преимущества:
— ненужность пускорегулирующей аппаратуры;
— при включении они зажигаются почти мгновенно;
— отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации;
— возможность работы как на постоянном (любой полярности), так и на переменном токе;
— возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);
— отсутствие мерцания и гудения при работе на переменном токе;
— непрерывный спектр излучения;
— устойчивость к электромагнитному импульсу;
— возможность использования регуляторов яркости;
— нормальная работа при низких температурах окружающей среды.
2. Недостатки:
— низкая световая отдача;
— относительно малый срок службы;
— резкая зависимость световой отдачи и срока службы от напряжения;
— цветовая температура лежит только в пределах 2300 – 2900 к, что придает свету желтоватый оттенок;
— лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт — 145 °C, 75 Вт — 250 °C, 100 Вт — 290 °C, 200 Вт — 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.
Отслужившие лампы накаливания не содержат вредных для окружающей среды веществ и могут утилизироваться как обычные бытовые отходы. Единственным ограничением является запрет на их переработку вместе с изделиями из стекла.
Лампа накаливания (ЛН) — электрический источник света, светящимся телом которого служит так называемое тело накала (ТН, проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления ТН в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX — первой половине XX в. ТН изготавливалось из более доступного и простого в обработке материала – углеродного волокна. (Приложение 2. Устройство лампы накаливания).
Принцип действия. В лампе накаливания используется эффект нагревания проводника (нити накаливания) при протекании через него электрического тока (тепловое действие тока). Температура вольфрамовой нити накала резко возрастает после включения тока. Нить излучает электромагнитное тепловое излучение в соответствии с законом Планка. Функция Планка имеет максимум, положение которого на шкале длин волн зависит от температуры. Этот максимум сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура была порядка нескольких тысяч градусов, в идеале 5770 K (температура поверхности Солнца). Чем меньше температура, тем меньше доля видимого света и тем более красным кажется излучение.
В обычном воздухе при таких температурах вольфрам мгновенно превратился бы в оксид. По этой причине ТН помещено в колбу, из которой в процессе изготовления ЛН откачиваются атмосферные газы. Наиболее опасными для ЛН являются кислород и водяные пары, в атмосфере которых происходит быстрое окисление ТН. Первые ЛН изготавливали вакуумными; в настоящее время только лампы малой мощности (для ЛОН — до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ЛН наполняют газом (азотом, аргоном или криптоном). Повышенное давление в колбе газополных ламп резко уменьшает скорость разрушения ТН из-за распыления. Колбы газополных ЛН не так быстро покрываются тёмным налётом распылённого материала ТН, а температуру последнего можно увеличить по сравнению с вакуумными ЛН. Последнее позволяет повысить КПД и несколько изменить спектр излучения.
КПД и долговечность. Почти вся подаваемая в лампу энергия превращается в излучение теплопроводности и конвекции малы. Для человеческого глаза, однако, доступен только малый диапазон длин волн этого излучения. Основная часть излучения лежит в невидимом инфракрасном диапазоне и воспринимается в виде тепла. Коэффициент полезного действия ламп накаливания достигает при температуре около 3400 K своего максимального значения 15 %. При практически достижимых температурах в 2700 K (обычная лампа на 60 Вт) КПД составляет 5%.
С возрастанием температуры КПД лампы накаливания возрастает, но при этом существенно снижается её долговечность. При температуре нити 2700 K время жизни лампы составляет примерно 1000 часов, при 3400 K всего лишь несколько часов. Как показано на рисунке справа, при увеличении напряжения на 20 %, яркость возрастает в два раза. Одновременно с этим время жизни уменьшается на 95%.
Ограниченность времени жизни лампы накаливания обусловлена в меньшей степени испарением материала нити во время работы, и в большей степени возникающими в нити неоднородностями. Неравномерное испарение материала нити приводит к возникновению истончённых участков с повышенным электрическим сопротивлением, что в свою очередь ведёт к ещё большему нагреву и испарению материала в таких местах. Когда одно из этих сужений истончается настолько, что материал нити в этом месте плавится или полностью испаряется, ток прерывается и лампа выходит из строя.
Преимущественная часть износа нити накала происходит при резкой подаче напряжения на лампу, поэтому значительно увеличить срок её службы можно используя разного рода плавные пускатели. Вольфрамовая нить накаливания имеет в холодном состоянии удельное сопротивление, которое всего в 2 раза выше, чем сопротивление алюминия. При перегорании лампы часто бывает, что сгорают медные проводки, соединяющие контакты цоколя с держателями спирали. Так, обычная лампа на 60 Вт в момент включения потребляет свыше 700 Вт, а 100-ваттная — более киловатта. По мере прогрева спирали её сопротивление возрастает, а мощность падает до номинальной. (Приложение 3. Светоотдача и КПД).
Для сглаживания пиковой мощности могут использоваться терморезисторы с сильно падающим сопротивлением по мере прогрева, реактивный балласт в виде ёмкости или индуктивности. Напряжение на лампе растет по мере прогрева спирали и может использоваться для шунтирования балласта автоматикой. Без отключения балласта лампа может потерять от 5 до 20 % мощности, что тоже может быть выгодно для увеличения ресурса.
Преимущества и недостатки ламп накаливания.
1. Преимущества:
— ненужность пускорегулирующей аппаратуры;
— при включении они зажигаются почти мгновенно;
— отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации;
— возможность работы как на постоянном (любой полярности), так и на переменном токе;
— возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);
— отсутствие мерцания и гудения при работе на переменном токе;
— непрерывный спектр излучения;
— устойчивость к электромагнитному импульсу;
— возможность использования регуляторов яркости;
— нормальная работа при низких температурах окружающей среды.
2. Недостатки:
— низкая световая отдача;
— относительно малый срок службы;
— резкая зависимость световой отдачи и срока службы от напряжения;
— цветовая температура лежит только в пределах 2300 – 2900 к, что придает свету желтоватый оттенок;
— лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт — 145 °C, 75 Вт — 250 °C, 100 Вт — 290 °C, 200 Вт — 330 °C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.
Отслужившие лампы накаливания не содержат вредных для окружающей среды веществ и могут утилизироваться как обычные бытовые отходы. Единственным ограничением является запрет на их переработку вместе с изделиями из стекла.
Читайте также:
- Есть ли в вашей школе органы общественного самоуправления
- Как вы объясните то что люди всегда стремились найти дополнительные источники энергии какие кратко
- Какой принцип характеризуется совместными усилиями семьи школы общественности в процессе воспитания
- Краткое содержание как ваше здоровье алексин
- Как на жизнедеятельности организмов проявляется взаимодействие абиотических факторов среды кратко
Лампа
накаливания — электрический источник света, в котором нить
накала (спираль) нагревается до высокой температуры за счёт протекания через
неё электрического тока, в результате чего излучается видимый свет. В качестве
нити накала в настоящее время используется в основном спираль из вольфрама и
сплавов на его основе (рис. 1).
Рис. 1.
Изображение лампы накаливания
Во
время работы лампы температура нити накаливания достигает 3000С0. Спираль
находится в стеклянном баллоне (колбе), из которой выкачивают воздух. Однако
это приводит к испарению вольфрама с поверхности спирали и перегоранию
спирали. Во избежание этого баллон лампы заполняют азотом или инертными
газами — криптоном или аргоном, которые предотвращают разрушение нити
накала.
Устройство лампы накаливания можно рассмотреть на рисунке 2, на нём также
указаны некоторые составные части лампы: 1) стеклянная колба, 2) инертный газ,
3) нить накаливания, 4) контактный провод (соединяется с ножкой); 5) контактный
провод (соединяется с цоколем); 6) держатели, 7) стеклянная ножка (лопатка),
вывод контакта на цоколь, 9) цоколь лампы, 10) изоляционный материал, 11)
контактный «носик».
Рис. 2. Конструкция
лампы накаливания
Разработки
электрической лампы освещения велись с начала XIX века.
1802 — опыты
В.В. Петрова с дуговой лампой освещения;
1844 — Жан
Бернар Фуко заменил электроды дуговой лампы из древесного угля электродами из
ретортного угля;
23 марта 1876 —
патент Павла Николаевича Яблочкова (рис. 4) на «электрическую свечу»
— угольные электроды в стеклянной колбе (рис. 3);
Рис. 3.
Лампа Яблочкова
П.Н.
Рис. 4. Яблочков П. Н.
Первая
лампочка с платиновой спиралью в стеклянной трубке создана Деларю
в 1809.
1870—1875 —
работа русского отставного офицера Александра Николаевича Лодыгина
(рис. 5, 6).
Рис. 5.
Лодыгин
А.Н.
Рис. 6. Лампа Лодыгина А.Н.
В 1874 А.Н.
Лодыгин получил русскую привилегию (авторское свидетельство) на лампу с
последовательным горением угольных стержней. Это были первые лампы длительного
действия — от 40 минут
до сотен часов.
В 90-х годах
тело накала заменили вольфрамовой нитью. В 1900 году
эти лампы демонстрировались на Парижской выставке.
Под
руководством Томаса Эдисона (рис. 7) были разработаны система
электрического освещения. Он изучал работы Лодыгина и Яблочкова и использовал
талант молодых учёных для промышленного применения открытий. Патенты он
оформлял на себя — требовались взносы для получения документов. Томас
из богатой семьи голландских эмигрантов даже не получил начального
образования. По историческим сведениям, Эдисон получил семейное образование и
с 12-летнего
возраста уже зарабатывал, продавая газеты и журналы. Эдисон стал умелым
предпринимателем.
Рис. 7.
Томас Эдисон
В
лампочке накаливания только 5% потреблённой энергии превращается в свет, а остальная
энергия преобразуется в тепло. К тому же, эти лампочки имеют малый срок службы
и низкую световую отдачу. Более экономичными являются энергосберегающие
(люминесцентные) лампы, которые более 70% энергии
преобразуют в свет, и светодиодные лампы.
Энергосберегающая
(люминесцентная) лампа состоит из колбы, которая наполнена
парами ртути и аргона, и пускового устройства — стартера. Внутренняя
поверхность колбы покрыта специальным веществом — люминофором. При воздействии
ультрафиолетового излучения на люминофор начинает излучаться видимый свет.
Люминофор может создавать различные цвета светового потока, так как сам может
иметь разнообразные оттенки. Компактная люминесцентная лампа представлена на
рисунке 8.
Рис. 8. Изображение
люминесцентной лампы
Она
состоит из колбы с люминофорным покрытием, в которой содержатся пары ртути и
впаяны нити накала, электронной пускорегулирующей аппаратуры,
пластмассового корпуса и цоколя.
При
одинаковой светоотдаче потребление электроэнергии лампами накаливания
приблизительно в 5 раз
больше, чем у люминесцентных ламп. Именно во столько раз различаются их
мощности.
Применение
светодиодных индикаторов и ламп позволяет сэкономить электроэнергию, увеличить безопасность
и эргономичность приборов. Светодиодные лампы (LED-лампы) применяются для
освещения жилых и производственных помещений, для уличной подсветки
(рис. 9).
Рис. 9.
Светодиодная лампа
Видеоролик «Работа тока в лампе накаливания»
Тепловое
действие электрического тока впервые наблюдалось в 1801 году,
когда током удалось расплавить различные металлы. Первое промышленное
применение этого явления относится к 1808 году,
когда был предложен электрозапал для пороха.
Способность
электрического тока нагревать металлические проводники используется в
промышленности и быту:
·
сушуары, фены, сушилки для рук;
·
утюги, отпариватели;
·
чайники, бойлеры (водонагреватели);
·
паяльники, электроплитки;
·
промышленные фены, тепловые пушки;
·
обогреватели воздушные и масляные;
·
пароварки, мультиварки;
·
кофемашины (паровые);
·
стиральные машины (нагревание воды);
·
дуговая сварка.
Нагревательный
элемент — проводник с большим значением удельного сопротивления, высокой
температурой плавления.
Формы
проводников могут иметь вид спирали, плоской металлической полосы или
тепловыделяющей поверхности.
В
таблице удельных сопротивлений можно определить проводники, оптимальные для
использования в нагревательных элементах.
Большим
удельным сопротивлением обладает нихром (сплав никеля, железа, хрома
и марганца). Существуют и другие материалы с большим удельным сопротивлением,
например, фехраль (сплав хрома, алюминия, кремния, железа и марганца).
В
качестве нагревательного элемента утюга используют ленту из нихрома или
спираль, которая нагревает жароустойчивую керамику — керамические кольца,
которые равномерно распределяют тепло на всю подошву утюга.
Глава 2. Электрические явления
Основная часть современной лампы накаливания — спираль из тонкой вольфрамовой проволоки. Вольфрам — тугоплавкий металл, его температура плавления 3387 °С. В лампе накаливания вольфрамовая спираль нагревается до 3000 °С, при такой температуре она достигает белого каления и светится ярким светом. Спираль помещают в стеклянную колбу, из которой выкачивают насосом воздух, чтобы спираль не перегорала. Но в вакууме вольфрам быстро испаряется, спираль становится тоньше и тоже сравнительно быстро перегорает. Чтобы предотвратить быстрое испарение вольфрама, лампы наполняют азотом, иногда инертными газами — криптоном или аргоном. Молекулы газа препятствуют выходу частиц вольфрама из нити, т. е. препятствуют разрушению накалённой нити.
Газонаполненная лампа накаливания изображена на рисунке 87.
Выдающимся изобретением в области освещения было создание русским инженером Александром Николаевичем Лодыгиным электрической лампы накаливания. Лампу, удобную для промышленного изготовления, с угольной нитью создал американский изобретатель Томас Эдисон.
Промышленность выпускает лампы накаливания на напряжение 220 В (для осветительной сети), 50 В (для железнодорожных вагонов), 12 В (для автомобилей), 3,5 и 2,5 В (для карманных фонарей).
Сегодня лампы накаливания, имеющие малый срок службы, а также низкую световую отдачу, вытесняются люминесцентными и светодиодными лампами.
Энергосберегающие лампочки (люминесцентные) более экономичны и служат гораздо дольше (рис. 88). В них 70% энергии преобразуется в свет, а в лампочке накаливания только 5%, остальная часть энергии (90—95%) переводится в тепло.
Энергосберегающая лампочка состоит из колбы, наполненной парами ртути и аргона, и пускорегулирующего устройства. На внутреннюю поверхность колбы нанесено специальное вещество — люминофор
, которое при воздействии ультрафиолетового излучения испускает видимый свет.
В светодиодных лампах электрический ток пропускают не по нити накала, а через миниатюрное электронное устройство (ЧИП — от англ, chip
— миниатюрный), нанесённое на полупроводниковый кристалл. При прохождении электрического тока светодиод испускает свет.
В последние годы светодиодные лампы находят применение при освещении помещений, их устанавливают в светофорах, фарах автомобилей. Светодиоды используют как индикаторы включения на панелях приборов, цифровых и буквенных табло, подсветке мобильных телефонов, мониторов и др.
Тепловое действие тока используют в различных электронагревательных приборах и установках. В домашних условиях широко применяют электрические плиты, утюги, чайники, кипятильники. В промышленности тепловое действие тока используют для выплавки специальных сортов стали и многих других металлов, для электросварки. В сельском хозяйстве с помощью электрического тока обогревают теплицы, кормозапарники, инкубаторы, сушат зерно, приготовляют силос.
Основная часть всякого нагревательного электрического прибора — нагревательный элемент. Нагревательный элемент представляет собой проводник с большим удельным сопротивлением, способный, кроме того, выдерживать, не разрушаясь, нагревание до высокой температуры (1000—1200 °С). Чаще всего для изготовления нагревательного элемента применяют сплав никеля, железа, хрома и марганца, известный под названием «нихром». Удельное сопротивление нихрома что
примерно в 70 раз больше удельного сопротивления меди. Большое удельное сопротивление нихрома даёт возможность изготовлять из него весьма удобные — малые по размерам — нагревательные элементы.
В нагревательном элементе проводник в виде проволоки или ленты наматывается на пластинку из жароустойчивого материала: слюды, керамики. Так, например, нагревательным элементом в электрическом утюге служит нихромовая лента, от которой нагревается нижняя часть утюга.
Особенности источника света
Лампы накаливания представляют собой самый первый источник электрического света, который был изобретен человеком. Данная продукция может иметь разную мощность (от 5 до 200 Вт). Но наиболее часто используются модели на 60 Вт.
Обратите внимание! Самый большой минус ламп накаливания – высокое потребление электроэнергии. Из-за этого с каждым годом уменьшается число ЛН, которые активно используются в качестве источника света.
Перед тем, как приступать к рассмотрению таких параметров, как температура нагрева и цветовая температура, необходимо разобраться в конструкционных особенностях подобных ламп, а также в принципе ее работы. Лампы накаливания в ходе своей работы преобразует электрическую энергию, проходящую по вольфрамовой нити (спирали) в световую и тепловую. На сегодняшний день излучение, по своей физической характеристике, делится на два типа:
Устройство лампы накаливания
- тепловое;
- люминесцентное.
Под тепловым, которое характерно для ламп накаливания, подразумевается световое излучение. Именно на тепловом излучении основано свечение электрической лампочки накаливания. Лампы накаливания состоят из:
- стеклянной колбы;
- тугоплавкой вольфрамовой нити (часть спирали). Важный элемент всей лампы, так как при повреждении нити лампочка перестает светиться;
- цоколя.
В процессе работы таких ламп происходит повышение t0 нити из-за прохождения через нее электрической энергии в виде тока. Чтобы избежать быстрого перегорания нити в спирали, из колбы выкачивают воздух. Обратите внимание! В более продвинутых моделях ламп накаливания, коими является галогеновые лампочки, вместо вакуума в колбе закачан инертный газ. Установка вольфрамовой нити происходит в спираль, которая закреплена на электродах. В спирали нить находится посередине. Электроды, к которым происходит установка спирали и вольфрамовой нити, соответственно, припаиваются к разным элементам: один к металлической гильзе цоколя, а второй – к металлической контактной пластине. В результате такой конструкции электрической лампочки, ток, проходя через спираль, вызывает нагрев (повышение t0 внутри колбы) нити, так как он преодолевает ее сопротивление.
Друзья, сравнениваем лампу накаливания мощностью 75 (Вт), компактную люминесцентную лампу мощностью 15 (Вт) и светодиодной лампы EKF серии FLL-A мощностью 9 (Вт).
Измеряем температуры нагрева ламп в рабочем режиме и рассчитаю их фактическую потребляемую мощность.
Температура нагрева ламп
С помощью тепловизора Fluke Ti9 Electrical произведу замер температуры нагрева ламп в разных точках (колба, основание лампы и патрон) через один час их работы.
1. Лампа накаливания 75 (Вт)
Температура нагрева лампы накаливания мощностью 75 (Вт) в верхней части колбы (в месте расположения нити накаливания) составила 268°С. На снимке ниже в указанной точке (квадратный курсив) температура равна 259,9°С.
Если прикоснуться к колбе, то можно получить ожог.
Температура нагрева у основания лампы накаливания значительно ниже и составила 81,6°С. Это вполне объяснимо, ведь нить накаливания находится в верхней части лампы — читайте статью про устройство лампы накаливания.
Температура нагрева патрона — 50,9°С.
2. Компактная люминесцентная лампа (КЛЛ) мощностью 15 (Вт) «Navigator»
Самую максимальную температуру нагрева люминесцентной лампы, которую мне удалось зафиксировать — это 139°С. Эта точка приходится на основание колбы, т.е. нагрев достаточно локальный (местный).
Температура по всей поверхности колбы примерно одинаковая и составила 74,5°С.
Если прикоснуться к колбе лампы, то нагрев достаточно ощутим.
Основание компактной люминесцентной лампы нагрелось в среднем до 58,5°С. В этом месте лампы находится схема (ЭПРА).
3. Светодиодная лампа (LED) мощностью 9 (Вт) EKF серии FLL-A
Максимальная температура нагрева светодиодной лампы мощностью 9 (Вт) EKF серии FLL-A составила всего 65°С. Этот нагрев зафиксирован в нижней части колбы, там где расположены драйвер и светодиоды. Низкий нагрев светодиодной лампы EKF обусловлен тем, что ее корпус сделан из алюминия и теплорассеивающего пластика, который обеспечивает хорошую теплоотдачу.
Об устройстве этой лампы я еще расскажу Вам более подробно в своих следующих статьях — подписывайтесь на рассылку.
Температура верхней части колбы составила всего 32,4°С. Ее без проблем можно держать в руках.
Температура патрона составила в среднем 36,9°С.
Результаты измеренных температур я занес в таблицу.
Какие выводы можно сделать из этого эксперимента?
Из-за высокой температуры нагрева ламп накаливания (в моем случае 268°С) условия их применения несколько ограничены в плане пожарной безопасности. Высокая температура может стать причиной возгорания (пожара). В связи с этим нужно соблюдать ряд определенных требований.
Например, в светильниках, установленных на натяжном потолке, мощность ламп накаливания не должна превышать 60 (Вт). Также не стоит забывать про термостойкую арматуру (патроны, плафоны, основание) светильника: керамика, карболит, стекло, и соблюдать расстояние от лампы до горючих материалов (пластиковые детали, деревянная поверхность, ткань).
Компактная люминесцентная лампа имеет максимальную температуру 139°С, но этот нагрев достаточно локальный (местный), поэтому можно считать, что бОльшая часть ее колбы имеет температуру нагрева 74,5°С.
Победителем данного испытания безусловно является светодиодная лампа EKF серии FLL-A. Ее максимальная температура составила всего 65°С. Это почти в 4 раза меньше, чем у лампы накаливания и в 2 раза меньше, чем у лампы КЛЛ.
КЛЛ и светодиодная лампа обладают низким уровнем пожарной опасности и минимальным риском возгорания, благодаря чему их применение более широкое по сравнению с лампами накаливания. Также эти лампы совершенно безопасно устанавливать в светильниках с пластиковыми патронами, плафонами и основанием, тканевыми абажурами, они идеально подходят для натяжных потолков и т.д.
Энергопотребление ламп
С помощью цифрового мультиметра, подключенного последовательно в цепь каждой лампы, произведем измерение потребляемого тока, а затем косвенным путем рассчитаем их мощность и сравним с заявленной (по паспорту).
Для информации! Читайте о том, как пользоваться мультиметром при измерении переменного тока.
1. Лампа накаливания 75 (Вт)
Измеренный ток потребления лампы накаливания мощностью 75 (Вт) равен 0,29 (А).
Зная напряжение в сети (220 В), рассчитаем энергопотребление лампы накаливания. Лампа накаливания не содержит в себе индуктивных и емкостных элементов — это чисто активная нагрузка, поэтому для расчета ее потребляемой активной мощности применим вот эту формулу:
Pрасч. = Uсети·Iизм. = 220·0,29 = 63,8 (Вт)
Полученное значение занесу в сводную таблицу.
2. Компактная люминесцентная лампа (КЛЛ) мощностью 15 (Вт) «Navigator»
Измеренный ток потребления компактной люминесцентной лампы мощностью 15 (Вт) равен 47,8 (мА) или 0,0478 (А).
Измеренный ток не является активным, в отличие от измеренного тока лампы накаливания, т.к. лампа КЛЛ содержит в себе электронный пуско-регулирующий аппарат (ЭПРА), который является источником реактивной мощности. А это значит, чтобы вычислить активный ток, нужно измеренное значение тока умножить на коэффициент мощности или, другими словами, косинус «фи» (cosφ). Коэффициент мощности мне не известен (в паспорте на лампу он не указан), поэтому я возьму усредненное значение для электронных ПРА, которое составляет 0,95.
Энергопотребление люминесцентной лампы рассчитаем путем умножения значения напряжения сети (220 В) на активный ток лампы:
Pрасч. = Uсети·Iизм.·cosφ = 220·0,0478·0,95 = 9,99 (Вт)
Полученное значение занесу в сводную таблицу.
3. Светодиодная лампа (LED) мощностью 9 (Вт) EKF серии FLL-A
Измеренный ток потребления светодиодной лампы мощностью 9 (Вт) EKF равен 31,0 (мА) или 0,031 (А).
Измеренный ток не является активным из-за того, что в светодиодной лампе установлен драйвер, который имеет реактивную составляющую. И это нужно учесть аналогичным образом, как в предыдущем случае с лампой КЛЛ. Коэффициент мощности для светодиодной лампы в паспорте не указан, поэтому я опять же возьму усредненное значение 0,95.
Энергопотребление светодиодной лампы рассчитаем путем умножения значения напряжения сети (220 В) на активный ток лампы:
Pрасч. = Uсети·Iизм.·cosφ = 220·0,031·0,95 = 6,47 (Вт)
Полученное значение занесу в сводную таблицу.
Таблица полученных результатов по энергопотреблению ламп.
Из данного эксперимента можно сделать следующие выводы.
У всех рассмотренных ламп заявленная мощность превышает фактическую, правда значения отклонения у ламп значительно отличаются. Ближе всех к заявленной мощности имеет лампа накаливания 75 (Вт). Ее отклонение от заявленной мощности составило всего 14,93%. На втором месте светодиодная лампа 9 (Вт) EKF — ее отклонение составило уже 28,11%. И на третьем месте КЛЛ 15 (Вт) «Navigator» — отклонение составило 33,4%.
Но все ничего, если бы лампа имела меньшее энергопотребление, чем заявленное, но при этом выдавала заявленный по паспорту световой поток (освещенность). Чего нельзя сказать про компактную люминесцентную лампу «Navigator» мощностью 15 (Вт). Напомню, что ее освещенность уступала эквивалентной 75-Ваттной лампе накаливания на целых 30%. Почему бы производителю не сделать лампу мощней и, соответственно, выдавать заявленный по паспорту световой поток? Это, пожалуй, останется загадкой.
Со светодиодной лампой EKF серии FLL-A мощностью 9 (Вт) все понятно. Заявленная мощность завышена, но и освещенность при этом на 8% больше, нежели у эквивалентной 75-Ваттной лампы накаливания. Получается, что энергопотребление светодиодной лампы EKF практически в 10 раз меньше, чем у лампы накаливания, но при этом освещенность на 8% больше. Экономия на лицо, считаю, что это самый оптимальный вариант.
Если сравнить светодиодную лампу с КЛЛ, то она и здесь выигрывает. Во-первых, освещенность светодиодной лампы на 36% больше, чем у КЛЛ, а во-вторых, энергопотребление почти на 35% меньше.
Принцип работы лампочки
Работающая лампа накаливания
Нагрев ЛН во время работы происходит из-за конструкционных особенностей источника света. Именно из-за сильного нагрева во время работы время эксплуатации ламп значительно уменьшается, что делает их сегодня не такими выгодными. При этом из-за нагрева нити происходит повышение t0 самой колбы.
Принцип работы ЛН основывается на преобразовании электрической энергии, которая проходит через нити спирали, в световое излучение. При этом температура разогретой нити может достигать 2600- 3000 оС.
Обратите внимание! Температура плавления для вольфрама, из которого изготовлены нити спирали, составляет 3200-3400 °С. Как видим, в норме температура нагрева нити не может привести к началу процесса плавления.
Спектр ламп при таком строении заметно отличается от спектра дневного света. Для такой лампы спектр излучаемого света будет характеризоваться преобладанием красных и желтых лучей. Стоит отметить, что колбы у более современных моделей ЛН (галогеновых) не вакуумируются, а также не содержат в своем составе спиральной нити. Вместо нее внутрь колбы закачивают инертные газы (аргон, азот, криптон, ксенон и аргон). Такие конструкционные усовершенствования привели к тому, что температура нагрева колбы во время работы несколько уменьшилась.
Принцип работы лампы накаливания
Принцип действия лампы накаливания основан на использовании электроэнергии для нагрева металлической нити (или спирали) до высокой температуры, при которой она начинает светиться. Если бы это происходило на открытом воздухе или в присутствии кислорода, металл бы просто сгорел, не успев достаточно нагреться, чтобы давать свет.
В лампе накаливания спираль не сгорает моментально, потому что изолирована от внешней среды стеклянной колбой. В ней либо создан вакуум, либо же она заполнена инертным газом.
Проволока не может гореть в вакууме, так же как и в инертном газе — он потому и назван инертным, что ни с чем и никогда не вступает в реакцию.
Преимущества и недостатки источника света
Несмотря на то, что сегодня рынок источников света изобилует самыми разнообразными моделями, лампы накаливания на нем встречаются еще достаточно часто. Здесь можно найти изделия на различное количество Вт (от 5 до 200 Вт и выше). Самыми востребованными лампочками являются от 20 до 60 Вт, а также 100 Вт.
Ассортимент выбора
ЛН продолжают достаточно широко использоваться потому, что у них имеются свои преимущества:
- при включении зажигание света происходит практически мгновенно;
- небольшие габариты;
- низкая стоимость;
- модели, внутри колбы которых имеется только вакуум, являются экологически чистой продукцией.
Именно такие достоинства и обусловили то, что ЛН еще являются достаточно востребованными в современном мире. В домах и на производстве сегодня легко можно встретить представителей данной осветительной продукции на 60 Вт и выше. Обратите внимание! Большой процент использования ЛН относится к промышленности. Зачастую здесь используются мощные модели (200 Вт). Но лампы накаливания имеют и достаточно внушительный перечень недостатков, к которым можно отнести:
- наличие слепящей яркости света, исходящего от ламп в процессе работы. В результате этого требуется использование специальных защитных экранов;
- во время работы наблюдается нагревание нити, а также самой колбы. Из-за сильного нагрева колбы при попадании на ее поверхность даже незначительного количества воды, возможен взрыв. Причем нагревание колбы происходит у всех лампочек (хоть на 60 Вт, хоть ниже или выше);
Обратите внимание! Увеличение нагрева колбы еще несет в себе определенную степень опасности травмироваться. Повышенная температура стеклянной колбы, при прикосновении к ней незащищенными участками кожи, может вызвать ожог. Поэтому такие лампы не стоит ставить в те светильники, к которым может легко дотянуться ребенок. Кроме этого повреждение стеклянной колбы может вызвать порезы или спровоцировать другие травмы.
Накал вольфрамовой нити
- высокое потребление электроэнергии;
- при выходе из строя не поддаются ремонту;
- низкий срок эксплуатации. Лампы накаливания быстро выходят из строя по причине того, что в момент включения или выключения света нить спирали может повредиться из-за частого нагрева.
Как видим, использование ЛН несет в себя гораздо больше минусов, чем плюсов. Самыми главными недостатками лап накаливания считается нагрев из-за повышения температуры внутри колбы, а также высокое потребление электроэнергии. Причем это касается всех вариантов ламп с мощностью от 5 до 60 Вт и выше.
Они их запретили! Сволочи!
Было дело. В цивилизованных странах лампы накаливания просто загнали в строгие рамки соответствия минимальным стандартам эффективности (за исключением некоторых специальных ламп) — это, конечно, закрыло путь на рынок многим моделям, но о полном запрете речь никогда не шла. В России в 2011 году был целиком запрещен оборот ламп накаливания мощностью 100 Вт и более. С 2013 года было запрещено продавать уже лампы мощностью более 75 Вт. А с 2014 года планировалось и вовсе полностью отказаться от ламп накаливания в пользу энергосберегающих. Но совсем недавно внезапно выяснилось, что наша страна еще не готова полностью переходить на энергосберегающие лампы, поэтому рассматриваются поправки к законам, отменяющие безусловный запрет на оборот ламп накаливания.
А пока что производители работают над созданием альтернативных источников света, которые бы удовлетворяли строгим стандартам энергоэффективности, светили ярко и приятно для глаза и не стоили половину зарплаты.
Важные параметры оценки
Одним из наиболее важных параметров работы ЛН является световой коэффициент. Этот параметр имеет вид отношения мощности излучения видимого спектра и мощности потребленной электроэнергии. Для данной продукции это достаточно малая величина, которая не превышает 4%. То есть, для ЛН характерна низкая светоотдача. К другим важным параметрам работы можно отнести:
- световой поток;
- цветовая t0 или цвет свечения;
- мощность;
- срок службы.
Рассмотрим первые два параметра, так как со сроком службы мы разобрались в предыдущем пункте.
Световой поток
Световой поток представляет собой физическую величину, которая определяет количество световой мощности в конкретном потоке излучения света. Кроме этого здесь имеется еще один важный аспект, как световая отдача. Она определяет для лампы отношение излучаемого лампочкой светового потока к мощности, которую она потребляет. Световая отдача измеряется в лм/Вт.
Обратите внимание! Световая отдача служит показателем экономичности и эффективности источников света.
Таблица светового потока и световой отдачи ламп накаливания
Как видим, для нашего источника света вышеперечисленные величины находятся на низком уровне, что свидетельствует об их небольшой эффективности.
Кто изобрел лампу накаливания?
Уоррен де ла Рю только что изобрел лампу накаливания и думает, где бы ему раздобыть еще немного платины
Не Эдисон. Он лишь улучшил существовавшие в то время модели и создал первую лампу, которая смогла проработать 40 часов. А изобрели лампу накаливания задолго до этого. Кто же был первым? Рискну предположить, что титул изобретателя должен достаться Уоррену де ла Рю (Warren De la Rue), британскому астроному и химику. В 1820 году он поместил в трубку, из которой был откачан воздух, платиновую проволоку и пропустил через нее электрический ток. Его изобретение так и не получило широкого распространения и тем более не пошло в массовое производство (догадайтесь почему).
Цвет свечения лампочек
Цветовая температура (t0) также является важным показателем. Цветовая t0 представляет собой характеристику хода интенсивности светового излучения лампочки и является функцией длины волны, определенной для оптического диапазона. Данный параметр измеряется в кельвинах (К).
Цветовая температура для лампы накаливания
Стоит отметить, что цветовая температура для ЛН находится примерно на уровне 2700 К (для источников света с мощностью от 5 до 60 Вт и выше). Цветовая t0 ЛН находится в красной и тепловой оттеночной области видимого спектра. Цветовая t0 полностью соответствует степени нагревания вольфрамовой нити, что не дает возможность ЛН быстро выйти из строя.
Обратите внимание! Для других источников света (например, светодиодные лампочки) цветовая температура не отображает степень их прогрева. При параметре нагрева ЛН в 2700 К светодиод прогреется всего лишь на 80ºС.
Таким образом, чем больше будет мощность ЛН (от 5 до 60 Вт и выше), тем больше будет происходить нагревание вольфрамовой нити и самой колбы. Соответственно, тем больше будет цветовая t0. Ниже приведена таблица, по которой можно сравнить эффективность и потребление мощности разных видов лампочек. В качестве группы контроля, с которой ведется сравнение, здесь взяты ЛН мощностью от 20 до 60 и до 200 Вт.
Сравнительная таблица мощностей разных источников света
Как видим, лампы накаливания по данному параметру значительно проигрывают в плане потребления мощности другим источникам света.
Светотехника и цвет свечения
В светотехнике важнейшим параметром для источника света является его цветовая t0. Благодаря ей можно определить цветовую тональность и цветность источников света.
Варианты цветовой температуры
Цветовая t0 лампочек определяется цветовой тональностью и бывает трех видов:
- холодной (от 5000 до 120000К);
- нейтральной (от 4000 до 50000К);
- теплой (от 1850 до 20000К). Его дает стеариновая свеча.
Обратите внимание! Рассматривая цветовую температуру ЛН, следует помнить, что она не совпадает с реальной тепловой температурой изделия, которая ощущается при прикосновении к ней рукой.
Для ЛН цветовая температура располагается в диапазоне от 2200 до 30000К. Поэтому они могут иметь излучение, близкое к ультрафиолетовому.