время работы системы оповещения о пожаре
Доброго времени суток всем постоянным Читателям нашего сайта, Гостям, а также Коллегам по цеху! Сегодня мы обсудим очень важный момент в области организации системы оповещения и управления эвакуацией при пожаре (СОУЭ). Мы поговорим о том, какое именно должно быть время работы элементов СОУЭ, то есть сколько по времени должны звенеть сирены (вещать громкоговорители) и мигать таблички, и от чего это время зависит.
Я заметил, что большинство проектировщиков систем ППЗ этот вопрос вообще «не парит». То есть они, в случае пожара, просто включают СОУЭ на неопределенное время работы – будет бубнить, пока не сгорит. Ошибки или нарушения в этом нет, так как системы ППЗ создаются и поддерживаются в работоспособном состоянии, собственно, для того чтобы один единственный раз корректно сработать, выполнить свое предназначение – спасти человеческие жизни, а далее, хоть пусть сгорят синим пламенем, туда им и дорога. Но вот ведь в чем «собака порылась» – сработка систем СОУЭ не всегда бывает именно по сигналу систем ПС, которые обнаружили наличие факторов пожара. Бывают еще и ложняки, и еще детские шалости и взрослое хулиганство, и даже просто случайности. Вот Вам для примера, случай, которому я был реальным свидетелем, так как произошел в доме, в котором я живу. Многоэтажка – 17 этажей, в которой смонтированы в общих коридорах и лифтовых холлах системы АПС и СОУЭ, система дымоудаления и компенсации притоком, система управления лифтами при пожаре, то есть все что необходимо присутствует.
Сигнал о сработке систем ПС выходит на прибор ППК, установленный в электрощитовой многоэтажки, блок индикации установлен в офисе управляющей компании, который находится в пределах микрорайона. Никакие сигналы на пожарную часть не выведены, так как функциональное назначение многоэтажного жилого дома Ф1.3 не требует обязательного вывода тревожных сигналов на пожарную часть. В выходной день, от активации ручного пожарного извещателя (выяснилось позже) вдруг зазвенели пожарные сирены. Люди (правда не все) дисциплинированно вышли на улицу возле дома. Многие даже «аварийные гомонки» с собой прихватили с документами и деньгами. Стоим, ждем, смотрим друг на друга. Кто то сначала собрался пожарных вызвать, но потом передумал – испугался штрафа за ложный вызов, если пожар вдруг не обнаружат. Прошло 5, потом 10 минут – ничего не происходит и не меняется, сирены также продолжают звенеть. Явно, время работы СОУЭ не ограничено. Кто то из соседей попытался дозвониться в управляющую компанию – никто не ответил на телефонный звонок, по случаю выходного дня. Дозвонились дежурному электрику, но он сказал – ничего не знаю, это не мое хозяйство, дал номер телефона организации, обслуживающей систему АПС. Звоним – никто не отвечает, опять же – выходной день. Прошло уже с пол-часа, сирены также звенят. И что делать? Пробежались по этажам, нашли активированный ручной пожарный извещатель (ИПР) в лифтовом холле. Разбираться в том, кто такой тыкал этот ИПР пальцем не стали, так как не до того было. Ну что, раскрутили, привели его в дежурное состояние – никакого результата. Понятно, шлейф продолжает находиться в сработке, так как никто его не перевзял в дежурный режим. На улицу уже вывалили все жильцы дома, так как невозможно находиться в помещении, слушать визг сирен, собаки соседские воют и лают, бабки и дедки пьют валидол и корвалол, дети орут благим матом – в общем, ситуация складывается тревожная.
В каком то подъезде, самые нервные жильцы-революционеры схватили стремянки и лестницы, и стали срывать сирены со стен, то есть ломать систему оповещения. Где то через час, притащили за шиворот слегка не трезвого электрика, заставили открыть электрощитовую и выдернуть плавкие вставки от цепи питания 220 вольт для ППК противопожарных систем. Опять нет результата – сирены продолжают звенеть от аккумулятора. На вопрос – «ну и сколько ждать, пока аккумуляторы не «сдохнут?», я сообщил уважаемому обществу о том, что емкость АКБ рассчитывается, как минимум, на гарантированное время работы в течении 24 часа системы в дежурном режиме, плюс час в режиме тревоги и, кроме того, многие еще плюс 30% закладывают, на потерю емкости АКБ, в процессе эксплуатации. Получается, еще три-четыре часа звенеть будет, как минимум. Скрюченные пальцы самих нетерпеливых соседей, уже было, потянулись к приемо-контрольному прибору с намерением содрать его со стены и, возможно, станцевать на нем потом лезгинку. Учитывая такие дела, вмешался я, так как ситуацию нужно было как то спасать. Команда «ОТСТАВИТЬ!!!» временно охладила горячие головы. И хоть и не правильно было самостоятельно трогать систему на чужом балансе, за которую отвечает чужая обслуживающая организация, я влез в меню ПКУ «С2000М», сбросил существующие тревоги и перевзял шлейф ПС опять в дежурный режим (повезло, что код доступа оставили заводской). А вот представьте, если бы код доступа был установлен индивидуально под себя обслуживающей организацией и его не удалось бы корректно ввести, что тогда? Сбрасывать клемму АКБ или отключать цепи сирен? Кто на это подпишется – возьмет на себя ответственность оставить весь дом без противопожарной защиты? А если вдруг пожар случись в это время, а система отключена, кто пойдет в тюрьму в этом случае? Вот только не я. А кто тогда этот герой? Вопрос, я считаю, риторический.
Конечно, позже, я взяв в руки текст нормативного документа СП5.13130.2009, провел подробный ликбез для руководства управляющей компании на тему обязательной организации на объекте поста охраны, ведущего круглосуточное дежурство, в соответствии с п. 14.4, а также п. 13.4.5 упомянутого документа, дабы подобных случаев не происходило в дальнейшем. Открою секрет – уже прошло более двух лет, а «воз и ныне там». Будем откровенны, русскому чиновнику (или как лучше назвать работников УК), хоть кол на голове теши, хоть какое то воздействие на него может оказать только тюрьма или расстрел, ну или может еще понижение зарплаты .
Примерно такая же интересная история может случиться не только от шалости детей или взрослых с ИПР. Мало ли возможностей и причин для ложного срабатывания АПС. Это и извещатель пламени (пульсар или спектрон какой нибудь) может от солнечной засветки сработать. И дымовой пожарный извещатель от пыли за подвесными потолками подработает. И многоточечный извещатель подработает от перепадов температур, не связанных с пожаром. Мало ли? И вот сработает СОУЭ, и если время работы не ограничено, будет звенеть, пока не сгорит. Такая вот история.
Ну мы, вернее я, отвлекся риторикой и разными историями, давайте, все таки, вернемся к теме статьи. Итак, что говорят нам нормативные документы по вопросу конкретного определения время работы в минутах или часах СОУЭ на конкретном объекте. Открываем самый главный документ – Федеральный закон 123-ФЗ и читаем статью 84, пункт 7.
«Системы оповещения людей о пожаре и управления эвакуацией людей должны функционировать в течение времени, необходимого для завершения эвакуации людей из здания, сооружения. (в ред. Федерального закона от 10.07.2012 N 117-ФЗ)».
Это значит, что мы рассчитываем необходимое время эвакуации с этого конкретного объекта, согласно существующим методикам, в которые мы сейчас вдаваться не будем, чтобы не «развезти» статью еще на три листа. Далее мы добавляем технологический запас к этому расчетному времени «на всякий пожарный» (мы, к примеру, добавляем времени еще + 30%). И вот в итоге, мы находим искомое минимальное время работы СОУЭ, которое необходимо обеспечить на данном объекте. В результате, получается не так уж и много. Среднее время эвакуации людей в безопасную зону, к примеру, из того же 17-этажного здания, составляет ориентировочно 10-20 минут. За эти минуты человек возьмет под мышку «аварийный гомонок», «черепашьим» шагом выползет из своей квартиры, закроет двери на ключ, потом не спеша, пройдет через по-этажную воздушную зону, и попадет в безопасную выделенную лестничную клетку, по которой спустится и выйдет из здания на улицу – вот и ВСЕ. Достаточно на все 20 минут? Думаю, вполне. Расчет времени эвакуации, конечно покажет точнее. Ну и все, к этим расчетным минутам прибавим еще 30%, получится 26 минут – вот это и есть время работы СОУЭ, в соответствии с требованиями ФЗ-123. Так и следует подходить ко всем объектам, оборудованным системами СОУЭ.
Ну и как итог к статье:
На заметку Заказчикам – с учетом информации, изложенной в статье, не поленитесь потребовать от проектировщиков и монтажников СОУЭ, чтобы они ограничили время работы – это будет полезно для Вас.
На заметку проектировщикам – не поленитесь запросить у Заказчика расчетное время эвакуации с объекта и написать конкретное время работы в СОУЭ в тексте проекта, так как монтажники обязательно сделают, если в проекте написано.
На заметку монтажной организации – подойдите к работе ответственно, напишите письмо Заказчику с предложением ограничить время работы СОУЭ, в соответствии с ФЗ-123, ст. 84, п. 7. Сделаете это – Заказчик потом спасибо скажет и еще Вам объекты в работу даст, как самому ответственному Подрядчику. В любом случае, это сработает на Ваш авторитет.
Ну что же, на этом статья « время работы системы оповещения о пожаре » завершается. Надеюсь, что эта статья кому нибудь, да пригодится.
Читайте другие публикации на сайте, ссылки на которые можно найти на Главной странице сайта, участвуйте в обсуждении в социальных сетях в наших группах по ссылкам:
Наша группа В Контакте – https://vk.com/club103541242
Мы в Одноклассниках – https://ok.ru/group/52452917248157
Мы в Facеbook – https://www.facebook.com/НОРМА-ПБ-460063777515374/timeline/
Мы на Майле – https://my.mail.ru/community/norma-pb/
Мы в Гугл+ https://norma-pb.blogspot.com
Мы в Твитере – https://twitter.com/z8NYoBs6Xitx7aL
Мы на Яндекс Дзен – https://zen.yandex.ru/id/5c86022fcd893400b3e4ea8c
Мы в Instagram – https://www.instagram.com/norma.p.b/
Мы в Телеграмме – https://t.me/norma_pb
Не знаю к чему там пришли в этих обсуждениях, тем более, что там обсуждались не всегда нормы РФ.
Мы всегда делаем 24 в дежурном (это легко т.к. система в дежурном почти не потребляет) + время эвакуации (если нет по каким то причинам данных то 3 часа (время спорное иногда меняется в зависимости от различных критериев) ) в пожарном режиме.
Действительно в СП3 эта тема- время автономной работы не раскрыта, к сожалению.
Но есть ФЗ 123
Где сказано
7. Системы оповещения людей о пожаре и управления эвакуацией людей должны функционировать в течение времени, необходимого для завершения эвакуации людей из здания, сооружения, строения.
11. Системы оповещения людей о пожаре и управления эвакуацией людей должны быть оборудованы источниками бесперебойного электропитания.
Если у вас даже 1 группа т.е. вы стойку питаете от АВР здания, то остается вероятность, что с этим кабелем либо с автоматом, либо с самим ГРЩ, АВР, или ТП что-то случится.
…
Отсортировано по релевантности | Сортировать по дате
…
Федерации
по пожарному
надзору
… … безопасности.
В целях обеспечения … … Федерального закона от 22 июля 2008 … … в
последнее время была проведена большая работа по созданию … … установлены или должны быть установлены
… … оповещения и управления … … эвакуацией (СОУЭ).
2.2. Органы … … осуществляется с учетом режима
эксплуатации … … специальных приборов,
обеспечивающих … … с основного источника на
резервный и … … нахождении прибора в дежурном режиме … … N 2 по связи непрерывно …
Изменено:16.07.2020
Путь: Главная / Библиотека / Нормативная база
… БЕДСТВИЙ
ПРИКАЗ
от 31 июля 2020… … ЗАЩИТЫ.
СИСТЕМЫ ПОЖАРНОЙ
СИГНАЛИЗАЦИИ… … ПРОЕКТИРОВАНИЯ»
В соответствии… … аппаратуре
управления… … правил не
может быть полностью… … извещения
о режиме работы пожарного… … извещателя.
3.4. Дежурный режим:… …
состояние прибора, не… … автономный источник питания… … управления пожарный;
ППУ — прибор… … принудительным пуском;
СОУЭ — система… … положения
5.1. СПА должны проектироваться… … же ЗКПС за время не
более… … обеспечен
непрерывный…
Изменено:16.03.2022
Путь: Главная / Библиотека / Нормативная база
В рамках … … Системы пожарной … … МЧС России от
31 июля … … сократить время ознакомления … … отсутствует
5.1. СПА должны проектироваться … … сигналов о работе СПА … … СПА должна быть спроектирована
… … сигнала
управления … … ППКУП
7.
13.14. Приборы приемно-контрольные … …
Помещение дежурного … …
резервирующих источников … … качестве резервного … … дежурном режиме в
… ….12. ППКП и ППУ, функциональные
… … информации и непрерывного … … управления СОУЭ при …
Дата актуализации статьи:30.11.2020
Путь: Главная / Статьи
… БЕДСТВИЙ
ПРИКАЗ
от 6 апреля … … ТРЕБОВАНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ»
В соответствии … … не может быть полностью … … аппаратура управления … … аварийных режимах [СП … … к одному прибору приемно-контрольному … …
Автономный источник … … пожарный
ППУ
—
Прибор … … доступом
СОУЭ
—
Система … … Электроприемники СПЗ должны относиться … … автономные резервные … … обеспечения непрерывного … … обеспечивающими работу светильников … … прокладки.
6.5. Время работоспособности … … ток СПЗ в дежурном …
Изменено:21.05.2021
Путь: Главная / Библиотека / Нормативная база
…
ПРИКАЗ
от 6 апреля … … ТРЕБОВАНИЯ ПОЖАРНОЙ БЕЗОПАСНОСТИ»
В соответствии … … не может быть полностью … … аппаратура управления … … аварийных режимах [СП … … к одному прибору приемно-контрольному … …
Автономный источник … … пожарный
ППУ
—
Прибор … … доступом
СОУЭ
—
Система … … Электроприемники СПЗ должны относиться … … автономные резервные … … обеспечения непрерывного … … обеспечивающими работу светильников … … прокладки.
6.5. Время работоспособности … … ток СПЗ в дежурном …
Изменено:28.03.2022
Путь: Главная / Библиотека / Нормативная база
… классов А и В. Ими
осуществляется … … название от английских … … пожаротушения должно обеспечивать
… … пожаротушения должны быть обеспечены:
… … пожаре, а также дежурного … …
подразделения пожарной охраны … … о
пожаре и управления эвакуацией людей, приборы управления … …
локализовать
пожар за время, необходимое … … дежурном режиме спринклерная … … датчиков.
Работа
дренчерной … … в том, что источником … … предназначены для непрерывного … … при помощи ППУ или ППКУП,… …
при пожаре (
СОУЭ);
автоматическая …
Изменено:18.08.2021
Путь: Главная / Обучение
… составляют около 15% от общего … … пожаротушения должно обеспечивать … … ликвидация пожара в помещении … … пожаротушения должны быть обеспечены:
… … пожаре, а также дежурного … … подразделения пожарной охраны … … веществ на время, необходимое … … о пожаре и управления эвакуацией людей, приборы управления … … до начала работы установки;
… … сосудов до источников … … находиться в режиме местного … … осуществляться непрерывно … … управления ППУ;
вручную … … помещения СОУЭ. При этом …
Изменено:18.08.2021
Путь: Главная / Обучение
Результаты поиска
1 — 7 из 7
Начало | Пред. |
1
|
След. | Конец
- Статьи
- Источники питания
- Особенности расчета времени резервирования технических средств СОУЭ
Особенности расчета времени резервирования технических средств СОУЭ
03 Сентябрь 2019
1. Основные требования
Система оповещения и управления эвакуацией СОУЭ является наиважнейшей составляющей системы безопасности людей находящихся внутри здания. К техническим средствам СОУЭ предъявляются высокие требования:
- по надежности;
- по помехо-, вибро-, электромагнитной устойчивости;
- по обеспечению аппаратного контроля;
- по обеспечению контроля целостности линий оповещателей, управляющих, контролирующих и питающих устройств;
- к соединительным кабелям и проводам;
- к бесперебойному питанию.
Основные требования к бесперебойному питанию сводятся к следующему:
СОУЭ должны функционировать в течение времени, необходимого для завершения эвакуации людей из здания, сооружения, строения.
При пропадании питания СОУЭ должна функционировать в течение 24 часов в дежурном режиме плюс один час в режиме тревоги. Если в части проекта осуществляется расчет времени эвакуации, то в этом случае время резервирования в тревожном режиме должно составлять 1,3 времени эвакуации.
Электропитание СОУЭ необходимо осуществлять совместно с резервным источником таким образом, чтобы система оставалась полностью работоспособной без выдачи ложных срабатываний в течение времени, необходимого для полной эвакуации людей в безопасное место.
По степени надежности электропитания СОУЭ относится к потребителям первой категории, снабженным устройством автоматического ввода резерва (АВР), обеспечивается электроэнергией от двух независимых источников по двум линиям, проложенным по разным трассам. Независимо от наличия АВР СОУЭ нуждается в дополнительном резервировании на время ввода второго источника (срабатывания и переключения АВР).
2. Нормативные требования
- Резервное электропитание технических средств оповещения должно осуществляться:
- от второго независимого ввода сети переменного тока;
- от источника питания постоянного тока;
- автономным электроагрегатом переменного тока.
Примечание. В качестве резервного источника постоянного тока могут быть использованы сухие гальванические элементы или аккумуляторные батареи.
- Время работы технических средств оповещения от резервного источника постоянного тока в дежурном режиме должно быть не менее 24 часов.
- Время работы технических средств оповещения от резервного источника постоянного тока в тревожном режиме должно быть не менее 1 часа. Не всегда имеется возможность обеспечить независимый ввод сети переменного тока. На этот случай приведем более подробные рекомендации:
- При невозможности по местным условиям осуществлять питание СОУЭ от двух независимых источников допускается организовать питание от одного источника: от разных трансформаторов, двухтрансформаторной или двух однотрансформаторных подстанций, подключенных к разным питающим линиям, проложенным по разным трассам, с устройством АВР на стороне низкого напряжения.
- При отсутствии в системе электроснабжения здания источников питания, оговоренных в пунктах 1-3, для резервного питания СОУЭ используются аккумуляторные батареи на напряжение, указанное в технических условиях на КТС СОУЭ. При этом устройства СОУЭ в нормальном режиме подключаются через понижающие трансформаторы соответствующего напряжения. Аккумуляторные батареи находятся на постоянной подзарядке от основного ввода питания.
- Емкость аккумуляторных батарей обеспечивает питание электроприемников в течение 24 ч в дежурном режиме и не менее времени эвакуации в режиме «Тревога».
3. Особенности использования АКБ в качестве средства резервирования СОУЭ
Аккумуляторные батареи АКБ, широко применяются для резервирования технических средств СОУЭ. Наиболее распространенными являются герметичные свинцово-кислотные (SLA) перезаряжаемые необслуживаемые аккумуляторы, рис.1.
Рис. 1 — Внешний вид АКБ, DJM 1245
К достоинству SLA аккумуляторов можно отнести эксплуатационную безопасность, относительно медленный саморазряд, возможность подзарядки, не критичность к условиям заряда. Недостатками являются большой вес, сокращение жизни батарей при глубоких разрядах и ухудшение эксплуатационных характеристик при нарушении температурного режима и перегрузке.
Большинство СОУЭ питаются от напряжения 24В. Для их питания можно использовать пару АКБ (2х12В), соединенных последовательно. Одной из важных характеристик АКБ является емкость. Емкость определяет энергию аккумулятора и, как следствие, величину допустимой нагрузки. При длительной работе АКБ разряжается, что сопровождается падением напряжения на его выводах. Аккумулятор считается разряженным при достижении (конечного) напряжения, определяемого характеристиками.
При работе с SLA АКБ нужно обратить внимание на следующие обстоятельства:
- при уменьшении температуры от 20 до 0 градусов Цельсия, емкость аккумулятора уменьшается примерно на 15%. При уменьшении температуры еще на 20 градусов емкость аккумулятора падает еще на 25%;
- при повышении температуры от 20 до 40 градусов Цельсия емкость аккумулятора возрастает примерно на 5%;
- не следует допускать глубокого разряда АКБ.
Для правильного определения величины нагрузки необходимо воспользоваться техническими характеристиками аккумулятора, рис. 2.
Рис. 2 — Разрядные характеристики АКБ, DJM 1245
Из разрядных характеристик можно проследить зависимость напряжения на клеммах АКБ от величины нагрузки и времени разряда (штрихпунктирная линия). Данное напряжение следует сопоставить с допустимым напряжением питания резервируемых средств. Из графика, рис. 2 видно:
- если АКБ нагрузить полностью (кривая 1С), то время разряда батареи составит менее 30мин;
- если АКБ нагрузить не более чем на 65% (кривая 0,65С), то время разряда батареи составит более 1ч.
Для мощных АКБ желательно использовать зарядное устройство с регулируемым уровнем заряда работающее как в режиме подзарядки, так и в буферном режиме. Зарядное устройство выбирается в зависимости от емкости и напряжения АКБ. Зарядный ток не должен превышать 10% от емкости АКБ: Jзар ≤ 0,1 C, где C – емкость АКБ, Ач.
4. Организация технических средств СОУЭ, обеспечивающая длительное резервирование
Наиболее жестким с точки зрения существующих нормативов является требование по обеспечению резервного питания технических средств СОУЭ в течение дежурного режима. Для обеспечения данного требования технические средства СОУЭ необходимо разбить на 2 группы (Независимо от режима работы, резервированию подлежат только блоки, выполняющие функции СОУЭ):
- средства, работающие в дежурном режиме;
- средства, работающие в тревожном режиме.
На рис.3 представлена схема организации технических средств СОУЭ при резервировании от АКБ.
Рис. 3 — Организация технических средств СОУЭ при резервировании от АКБ
Контроллер питания следит за напряжением на основном вводе и при его пропадании выдает команду на подключение блоков, работающих в дежурном режиме, к резервному вводу, к которому подключены АКБ и зарядное устройство.
Под дежурным режимом будем понимать режим функционирования, в котором задействовано минимальное количество узлов системы (с минимальным энергопотреблением каждого узла) находящихся на дежурстве. Данные блоки (узлы) активируются от автоматической установки пожарной сигнализации АУПС и должны иметь возможность оперативного включения технических средств, отвечающих за тревожный режим. В дежурном режиме все крупные потребители, например, усилители должны находиться в режиме минимального потребления и оперативной готовности к включению в режиме тревоги.
Тревожный режим активируется командным сигналом, поступающим от пожарной станции. В тревожном режиме задействуются все технические средства, необходимые для решения основной задачи (см. основные требования).
5. Расчет времени резервирования технических средств СОУЭ при работе с АКБ
Расчет мощности АКБ
Основными параметрами, необходимыми для расчета мощности, являются его емкость C и напряжение U на его отводах, определяемое параметрами и количеством АКБ. Емкость аккумулятора определяет максимальный ток I и, как следствие, величину нагрузки которую он сможет обеспечивать в течение требуемого времени.
Емкость аккумулятора C измеряется в ампер-часах (Ач, при маленькой емкости – в миллиампер-часах (мАч)). и является произведением постоянного тока разряда аккумулятора на время разряда (в часах):
Энергия W накапливаемая в аккумуляторе, зависит как от его емкости (1), так и от напряжения U:
Аккумуляторные батареи строятся следующим образом. При параллельном соединении нескольких АКБ емкость аккумуляторной батареи C увеличивается пропорционально их количеству (пример последовательного соединения 2-х АКБ изображен на рис.1.). При последовательном соединении нескольких АКБ U на крайних отводах такой составной батареи также увеличивается пропорционально их количеству . Другими словами, при параллельном подключении АКБ суммарная мощность увеличивается за счет увеличения тока, при последовательном соединении, за счет увеличения напряжения. В составных батареях, используемых в блоках бесперебойного питания (UPS), используется последовательно параллельное подключение, рис.4.
Рис. 4 — Пример построения составной аккумуляторной батареи
Мощность составной батареи складывается из мощностей каждого аккумулятора. Общая энергия батареи E_б, составленной из нескольких АКБ одинаковой мощности:
Расчет мощности, потребляемой техническими средствами СОУЭ
По существующим нормативам при пропадании питания СОУЭ должна функционировать в течение 24ч дежурного времени и времени, необходимого до завершения эвакуации людей, в режиме тревоги. Для минимизации средней мощности потребления в течение всего периода технические средства СОУЭ разбиваются на две группы, мощности каждой из которых рассчитываются отдельно.
Суммарная мощность потребления блоков, находящихся в дежурном режиме:
Суммарная мощность потребления блоков, находящихся в тревожном режиме:
Средняя мощность, потребляемая техническими средствами СОУЭ в течение дежурного Tд и тревожного Tтр времени:
Проверка расчета
Допущение: Входные параметры АКБ можно брать непосредственно из технических характеристик, не опираясь на нагрузочные характеристики, так как последние ориентированы на активную нагрузку (например, электрический чайник).
Запишем критерий (правильности) расчета времени резервирования технических средств СОУЭ, при резервировании от АКБ:
6. Пример расчета
Воспользуемся результатами, полученными выше, и рассчитаем время резервирования СОУЭ, построенной на 2-х блоках: комбинированной системе ROXTON RA-8236 и блоке сообщений ROXTON VF-8160 (см. статью «Система оповещения Roxton 8000»). Схема включения данных устройств, обеспечивающая оптимальный режим работы, дана в Приложении 1.
Входные данные для расчета
Характеристики блока сообщений ROXTON VF-8160:
- Мощность потребления в дежурном режиме (по 24В) – 0 Вт;
- Мощность потребления в тревожном режиме (по 24В) – 12 Вт;
Характеристики комбинированной системы ROXTON RA-8236:
- Мощность потребления в дежурном режиме (по 24В) – 7,2 Вт;
- Мощность потребления в тревожном режиме (по 24В) – 14,4 Вт;
- Мощность потребления в тревожном режиме (по 24В) при полной нагрузке – 400 Вт;
- Мощность нагрузки усилителя (80% от полной мощности – 360Вт ) – 288 Вт.
Расчет
- Рассчитаем мощность потребления (блоков) в течении дежурного режима (Рд):
Pд = Тд * Pд = 24*7,2=173 Вт - Рассчитаем мощность потребления (блоков) в тревожном режиме для времени тревожного режиме Ттр=1час:
Ртр = Ттр (Ртр + Pд) = 1*(0,8*400 + 12) = 332Вт - Рассчитаем суммарную мощность потребления блоков:
Pсум = (Ртр + Pд) = 173+332 = 505 Вт - Рассчитаем ток потребления СОУЭ.
Iсум = Pсум / 24 = 505/24 = 21Ач
Вывод: для резервирования данной системы необходимо выбрать пару АКБ емкостью не менее 21А.
7. Питание системы оповещения от источника бесперебойного питания
На современном рынке присутствует большое разнообразие источников бесперебойного питания (ИБП). Производители, выдвигая на передний план те или иные преимущества, обычно скрывают недостатки своих брендов, поэтому для работы с СОУЭ желательно использовать ИБП, которые прошли надлежащую сертификацию.
Основной характеристикой ИБП является полная мощность, измеряемая в ВА (Вольт-Амперах). Полную мощность не следует путать с активной мощностью или мощностью нагрузки, измеряемой в ваттах. Если производитель для своего ИБП не указывает мощность в ваттах, то для ее получения необходимо полную мощность умножить на коэффициент «0,7». Данный коэффициент называется коэффициентом мощности (Power Factor), равен отношению активной мощности к полной мощности (Вольт-Ампер) и определяет характер нагрузки (активная или реактивная (комплексная)).
Длительную работу резервируемой системы при пропадании питания обеспечивают аккумуляторные батареи (АКБ), которые могут быть как встроенными, так и внешними. Большинство ИБП содержат встроенные АКБ, но для увеличения емкости могут предлагаться и дополнительные внешние АКБ, позволяющие увеличить время резервирования. При одновременной работе (комбинировании) внутренних и внешних АКБ необходимо удостовериться в том, что суммарная энергия (W) этих АКБ, не превысит возможности ИБП.
На рис.5 изображен мощный ИБП со встроенными АКБ, предназначенный для установки в электротехнический шкаф.
Рис. 5 — Внешний вид стоечного блока бесперебойного питания JPX-3000
В современных ИБП встроенные зарядные устройства управляются процессором, который автоматически определяет, оптимизирует режим подзарядки, осуществляет полный контроль параметров, управляет внешней индикацией режимов. Программное управление позволяет дистанционно контролировать и управлять параметрами ИБП. К достоинствам ИБП по сравнению с АКБ можно отнести простоту монтажа, удобство в обслуживании и самое главное, большую безопасность.
Для расчета мощности E, эффективно резервируемой ИБП, необходимо учитывать дополнительный коэффициент , учитывающий потери на инвертирование:
Приложение 1
Схема подключения блока сообщений ROXTON VF-8160 к комбинированной системе ROXTON RA-8236, обеспечивающая оптимальный режим работы в дежурном режиме
Рис. 6 — Схема подключения
Особенность данного подключения заключается в том, что блок сообщений ROXTON VF-8160 в дежурном режиме полностью обесточен. В тревожном режиме он активируется от терминального усилителя RA-8236 и включается в работу. Такое включение позволяет за период дежурного времени сэкономить 24*12=288Вт.
Приложение 2
Схема включения блоков системы аварийного оповещения и музыкальной трансляции ITC-ESCORT, обеспечивающая длительное время резервирования.
На рисунке ниже представлен фрагмент системы оповещения, реализованный на системе ITC-ESCORT. Система работает в 2-х режимах: режим тревожного оповещения и режим музыкальной трансляции. ИБП осуществляет резервирование по питанию только тех блоков, которые отвечают за дежурный и тревожный режим. Блоки, реализующие музыкальную трансляцию не резервируются.
Рис. 7 — Схема подключения
Работа системы осуществляется следующим образом (на схеме сигналы управления и включения, обозначены пунктирными линиями). Управление 10-ю линиями громкоговорителей осуществляет автоматический селектор ITC ESCORT T-6212, к которому через селектор зон ITC ESCORT T-6202 подключены 2 независимых усилителя: ITC ESCORT T-120 – усилитель, работающий в режиме музыкальной трансляции, ITC ESCORT T-61500 – высокоприоритетный усилитель, работающий в тревожном режиме. Аварийный усилитель ITC ESCORT T-61500 запитан от отключаемых (управляемых) розеток распределителя питания ITC ESCORT T-6216. В дежурном режиме данные розетки обесточены. Автоматический селектор Т-6212, также как и аварийная панель ITC ESCORT T-6223A, отвечающая за включение тревожного сообщения находятся на дежурстве и должны быть подключены к статическим (не отключаемым) розеткам распределителя питания ITC ESCORT T-6216. При поступлении сигнала включения от системы пожарной сигнализации, на выходе автоматического селектора возникает контрольный сухой контакт, который активирует распределитель питания. На выходе отключаемых розеток возникает напряжение 220В, которое запитывает селектор зон ITC ESCORT T-6202 и усилитель ITC ESCORT T-61500. Блоки, отвечающие за музыкальную трансляцию – усилитель ITC ESCORT T-120 и CD-проигрыватель ITC ESCORT T-6221 не резервируются.
© 2014, О. Кочнов
Информация и фото с http://www.escortpro.ru/page/article/article91.htm
Целью создания систем противопожарной защиты, как следует из статьи 51 Федерального закона №123-2009 «Технический регламент пожарной безопасности», является «защита людей и имущества от воздействия опасных факторов пожара и/или ограничение его последствий». Здесь же и определено, что «защита людей и имущества от воздействия опасных факторов пожара и/или ограничение его последствий обеспечиваются снижением динамики нарастания опасных факторов пожара, эвакуацией людей и имущества в безопасную зону и/или тушением пожара».
Таким образом, имеем две основные задачи систем противопожарной защиты:
■ противопожарные мероприятия, снижающие вероятность самого пожара или ограничивающие его распространение;
■ эвакуация людей и имущества (если стоит такая задача) в безопасную зону и тушение самого пожара.
Основным критерием соответствия объекта требованиям пожарной безопасности является непревышение установленного Законом допустимого значения пожарного риска, расчетная величина которого напрямую связана с вероятностью возможной своевременной эвакуации людей.
Таким образом, как видно из приведенных требований к системе противопожарной защиты, само обнаружение пожара, в том числе и с помощью технических средств пожарной сигнализации, не является конечной целью, а лишь необходимым условием для своевременной эвакуации людей.
Для этих целей на всех объектах должна быть система оповещения и управления эвакуацией людей при пожаре (СОУЭ).
СОУЭ — это комплекс организационных мероприятий и технических средств, предназначенный для своевременного сообщения людям информации о возникновении пожара, необходимости эвакуироваться, путях и очередности эвакуации.
Основные требования к СОУЭ изложены в статье 84 Федерального закона №123. Вот часть из них:
«Оповещение людей о пожаре, управление эвакуацией людей и обеспечение их безопасной эвакуации при пожаре в зданиях, сооружениях и строениях должны осуществляться одним из следующих способов или комбинацией следующих способов:
■ подача световых, звуковых и (или) речевых сигналов во все помещения с постоянным или временным пребыванием людей;
■ трансляция специально разработанных текстов о необходимости эвакуации, путях эвакуации, направлении движения и других действиях, обеспечивающих безопасность людей и предотвращение паники при пожаре;
■ размещение и обеспечение освещения знаков пожарной безопасности на путях эвакуации в течение нормативного времени;
■ включение эвакуационного (аварийного) освещения;
■ дистанционное открывание запоров дверей эвакуационных выходов;
■ обеспечение связью пожарного поста (диспетчерской) с зонами оповещения людей о пожаре;
■ иные способы, обеспечивающие эвакуацию».
Применение тех или иных способов оповещения конкретизированы в своде правил СП3.13130.2009 и в НПБ 104-03 (на объекты, введенные до 2009 года).
Информация, передаваемая системами оповещения людей о пожаре и управления эвакуацией людей, должна соответствовать информации, содержащейся в разработанных и размещенных на каждом этаже зданий, сооружений и строений планах эвакуации людей.
Отсюда вытекает, что проектно-монтажная организация формирует алгоритм оповещения в строгом соответствии с уже разработанным планом эвакуации, а вся ответственность за него лежит целиком на заказчике.
Классификация, основные требования, состав оборудования
Система оповещения и управления эвакуацией — одна из наиболее важных составляющих системы безопасности. Основное назначение системы оповещения — это предупреждение находящихся в здании людей о пожаре или другой чрезвычайной ситуации, а также координация их действий при осуществлении эвакуации. СОУЭ представляет собой комплекс организационных мероприятий и технических средств, предназначенных для решения этих задач.
Система оповещения и условия ее применения должны удовлетворять требованиям, изложенным в ряде нормативных документов, среди которых основополагающими являются: «Технический регламент о требованиях пожарной безопасности «Федеральный закон № 123-Ф3», ГОСТ Р 53325-2009 «Техника пожарная. Технические средства пожарной автоматики. Общие технические требования. Методы испытаний», Свод правил СП.3.131.30.2009 «Системы противопожарной защиты. Системы оповещения и управления эвакуацией людей при пожаре. Требования пожарной безопасности».
Вступившие в силу новые нормативные документы значительно повысили уровень требований в области пожарной безопасности, однако в них не рассматривается вопрос сопряжения пожарных систем оповещения и управления эвакуацией с системой оповещения гражданской обороны. В первой редакции НПБ 104-03, п. 3.2 указывалось, что при проектировании СОУЭ должна предусматриваться возможность ее интеграции с системой оповещения ГО, в последующих редакциях НПБ 104-03 данное положение отсутствовало. Вследствие этого на объекте, возможно, будут строиться две независимые системы, частично дублирующие друг друга.
Выпускаемые на сегодняшний день СОУЭ имеют техническую возможность в первую очередь принимать сигналы и команды централизованной системы оповещения ГО и транслировать их по речевым оповещателям («Блюз», «Октава-80», «Орфей», «Стриж-2», «Тромбон» и др.).
Классификация систем оповещения
В зависимости от способа оповещения, деления здания на зоны оповещения и других характеристик СОУЭ подразделяются на 5 типов, приведенных в таблице. В п. 7. СП.31330.2009 изложены требования пожарной безопасности по оснащению зданий (сооружений) различными типами систем оповещения и управления эвакуацией людей при пожаре. Допускается использование звукового способа оповещения для СОУЭ 3-5-го типов в отдельных зонах пожарного оповещения (технические этажи, чердаки, подвалы, закрытые рампы автостоянок и другие помещения, не предназначенные для постоянного пребывания людей).
В зданиях с постоянным пребыванием людей с ограниченными возможностями по слуху и зрению должны применяться световые мигающие оповещатели или специализированные оповещатели (в том числе системы специализированного оповещения, обеспечивающие выдачу звуковых сигналов определенной частоты и световых импульсных сигналов повышенной яркости, а также другие технические средства индивидуального оповещения людей). Выбор типа оповещателей определяется проектной организацией в зависимости от физического состояния находящихся в здании людей. При этом указанные оповещатели должны исключать возможность негативного воздействия на здоровье людей и приборы жизнеобеспечения людей.
Выбор типа эвакуационных знаков пожарной безопасности, указывающих направление движения людей при пожаре (фотолюминесцентные знаки пожарной безопасности, световые пожарные оповещатели, другие эвакуационные знаки пожарной безопасности), осуществляется организацией-проектировщиком.
Состав и структура системы оповещения
В СОУЭ 1-го и 2-го типов оповещение осуществляется с помощью световых и звуковых оповещателей. На рынке уже появляются приборы, предназначенные именно для 1-го и 2-го типов оповещения («Тромбон-ПУ-2»), обеспечивающие контроль исправности линий связи с оповещателями, а также питание оповещателей от аккумуляторной батареи при отключении основного питания.
СОУЭ 3-5-го типов представляют собой автономные централизованные комплексы и строятся по модульному принципу. В зависимости от архитектурных особенностей здания и его назначения системы оповещения включают в себя устройства передачи экстренных сообщений или же дополняются модулями для трансляции по зонам фоновой музыки и объявлений общего назначения. Кроме того, системы оповещения о пожаре различаются по количеству зон оповещения, по способности программирования логики событий, по возможности управления СОУЭ.
Можно выделить несколько блоков, общих для всех систем оповещения о пожаре:
- блок управления и коммуникации;
- усилительное оборудование (предварительные усилители и усилители мощности);
- выносные микрофонные консоли для организации удаленного рабочего места;
- источники сигнала (микрофон, установленный на пульте диспетчера или на блоке тревожных сообщений, цифровой магнитофон с записанными тревожными сообщениями, генератор тонального сигнала, радиоприемник, CD-проигрыватель, внешняя трансляционная сеть);
- громкоговорители (оповещатели рупорные, настенные, потолочные);
- эвакуационные знаки пожарной безопасности, световые оповещатели.
Выбор типа оповещателей определяется проектной организацией в зависимости от физического состояния находящихся в здании людей. При этом указанные оповещатели должны исключать возможность негативного воздействия на здоровье людей и приборы жизнеобеспечения людей
Для управления СОУЭ должны использоваться специализированные технические средства — прибор управления пожарный (ППУ). В общем случае это техническое средство, предназначенное для формирования сигналов управления исполнительными устройствами автоматических средств противопожарной защиты и контроля целостности и функционирования линий связи между ППУ и исполнительными устройствами. В случае ППУ для обеспечения функционирования СОУЭ в качестве исполнительных устройств используются оповещатели различного типа.
Требования к оповещателям и ППУ изложены в ГОСТ Р 53325 «Технические средства пожарной автоматики. Общие технические требования. Методы испытаний» в разделах б и 7 соответственно, а сами технические средства должны иметь сертификат соответствия этому стандарту.
Системы оповещения о пожаре должны включаться автоматически от командного сигнала, формируемого автоматической установкой пожарной сигнализации или пожаротушения, при этом по зонам передается записанное электронное сообщение. В случае необходимости диспетчер может сам передавать экстренные сообщения с микрофонной консоли или с блока управления СОУЭ (полуавтоматический режим). В СОУЭ 3-5-го типов полуавтоматическое управление, а также ручное, дистанционное и местное включение допускается использовать только в отдельных зонах оповещения.
Выбор вида управления определяется функциональным назначением, конструктивными особенностями здания и исходя из условия обеспечения безопасной эвакуации людей при пожаре. Одним из основных требований, предъявляемых к СОУЭ 4-5-го типов, является разделение здания на зоны пожарного оповещения для предварительного оповещения персонала и последовательной организации эвакуации людей из зон оповещения. Распределение сигнала по зонам оповещения обеспечивается при коммутации источников сигнала и зон оповещения. Источники сигнала переключаются в зоны оповещения в соответствии с установленной приоритетностью. Наивысшим приоритетом обладает сигнал, поступивший с микрофона диспетчера.
По конструктивному исполнению системы оповещения можно разделить на те, у которых сигнал коммутируется по зонам оповещения до усиления (рис. 1), и на те, у которых это происходит после усиления (рис. 2). В случае коммутации сигнала до усиления системы о пожаре должны содержать по одному усилителю на каждую зону («Блюз», «Стриж-2»). Во втором случае несколько источников сигнала подключаются ко входу усилителя, а затем усиленный звуковой сигнал распределяется по зонам оповещения («Тромбон»).
В основном системы оповещения являются аналоговыми проводными, вместе с тем появились СОУЭ, в которых обработка и передача аудиоинформации осуществляется в цифровом виде («Киберсистема», «Стриж-2»), а также беспроводные СОУЭ («Орфей-Р»). Это существенно увеличивает количество транслируемых сигналов и позволяет передавать параллельно по одним линиям несколько сообщений, а также объединять несколько автономных систем оповещения и управлять ими. В беспроводной системе значительно упрощается монтаж, а главное — обеспечивается живучесть СОУЭ. Для трансляции звуковых сообщений по зонам оповещения используются громкоговорители различных конструкций и звуковые оповещатели. Количество звуковых и речевых пожарных оповещателей, их расстановка и мощность должны обеспечивать уровень звука во всех местах постоянного или временного пребывания людей в соответствии с нормами (ГОСТ Р 53325-2009, СП 3.131302009). Уровень звукового давления, развиваемый звуковыми пожарными оповещателями на расстоянии (1,00 + 0,05) м, должен быть установлен в пределах от 85 до 120 дБ, речевыми пожарными оповещателями — в пределах от 70 до 110 дБ. Частота сигналов, генерируемых звуковыми пожарными оповещателями, должна быть в пределах 200-5000 Гц; диапазон воспроизводимых частот речевых пожарных оповещателей должен быть не уже, чем от 500 до 3500 Гц, при неравномерности частотной характеристики в диапазоне не более 16 дБ.
В любой точке защищаемого объекта, где требуется оповещение людей о пожаре, уровень громкости, формируемый звуковыми и речевыми оповещателями, должен быть выше допустимого уровня шума. Речевые оповещатели должны быть расположены таким образом, чтобы в любой точке защищаемого объекта, где требуется оповещение людей о пожаре, обеспечивалась разборчивость передаваемой речевой информации. Световые оповещатели должны обеспечивать контрастное восприятие информации в диапазоне, характерном для защищаемого объекта.
Таким образом, расстановка оповещателей и выбор подводимой к ним мощности должны быть рассчитаны с учетом конкретных мест установки, и этот расчет должен быть приведен в рабочей документации. Вместо расчета для подтверждения обоснованности принятых технических решений можно использовать результаты контрольных измерений при сдаче системы в эксплуатацию.
Одним из основных требований, предъявляемых к СОУЭ 4-5-го типов, является разделение здания на зоны пожарного оповещения для предварительного оповещения персонала и последовательной организации эвакуации людей из зон оповещения
При разделении здания, сооружения или строения на зоны оповещения людей о пожаре должна быть разработана специальная очередность оповещения о пожаре людей, находящихся в различных помещениях здания, сооружения или строения.
Размеры зон оповещения, специальная очередность оповещения людей о пожаре и время начала оповещения людей о пожаре в отдельных зонах должны быть определены исходя из условия обеспечения безопасной эвакуации людей при пожаре.
Этот случай, как правило, используется для объектов с массовым пребыванием людей или имеющих специфику функционирования (школы, интернаты, больницы и т.п.), а также при наличии нескольких эвакуационных путей из каждой точки объекта.
Коммуникации систем оповещения людей о пожаре и управления эвакуацией людей допускается совмещать с радиотрансляционной сетью здания, сооружения и строения.
Вроде как совмещать с радиотрансляционной сетью разрешается, но возможности использования ее в качестве основы СОУЭ очень ограничены.
Как уже здесь было отмечено, при проектировании СОУЭ для вновь вводимых объектов в полной мере должны быть учтены требования свода правил СП3.13130.2009, а для введенных до 2009 года — НПБ 104-03. И вот на основании этого документа получается, что в зависимости от способа оповещения, деления здания на зоны оповещения и других характеристик СОУЭ подразделяется на 5 типов:
■ 1 тип- оповещение звуковое (сирена, тонированный сигнал и др.);
■ 2 тип- оповещение звуковое (сирена, тонированный сигнал и др.) и световое с помощью оповещателей «Выход»;
■ 3 тип- оповещение речевое (передача специальных текстов) и световое с помощью оповещателей «Выход»;
■ 4 тип — оповещение речевое (передача специальных текстов) и световое с помощью оповещателей «Выход» и эвакуационных знаков пожарной безопасности, указывающих направление движения;
■ 5 тип — оповещение речевое (передача специальных текстов) и световое с помощью оповещателей «Выход» и световых оповещателей, указывающих направление движения людей, с изменяющимся смысловым значением.
Для 4 и 5 типа предусматривается разделение здания на зоны пожарного оповещения и обратная связь зон пожарного оповещения с помещением пожарного поста-диспетчерской.
Для 5 типа дополнительно должна быть предусмотрена еще возможность реализации нескольких вариантов эвакуации из каждой зоны пожарного оповещения и координированное управление из одного пожарного поста-диспетчерской всеми системами здания, связанными с обеспечением безопасности людей при пожаре.
Оповещатели не должны иметь регуляторов громкости и должны подключаться к сети электропитания и (или) к линиям оповещения с помощью пайки или под винт, причем клеммы должны быть продублированы для обеспечения соединения входных и выходных проводов не путем прямого контакта между проводниками, а через клеммы пожарного оповещателя. Звуковые сигналы оповещения должны отличаться по тональности от звуковых сигналов другого назначения. Световые оповещатели должны обеспечивать контрастное восприятие информации при освещенности в диапазоне от 1 до 500 лк.
Мигающий световой оповещатель должен иметь частоту мигания в диапазоне от 0,5 до 5 Гц. Соединительные линии в СОУЭ с речевым оповещением, а также радиоканальные соединительные линии должны быть обеспечены системой автоматического контроля их работоспособности.
В дополнение к традиционным указателям эвакуационного выхода на рынке систем оповещения появились звуковые оповещатели нового класса — Exit Point, которые обеспечивают эвакуацию при задымлении, когда визуальные средства становятся неэффективными. Время эвакуации сокращается до 75%. В отличие от обычных звуковых оповещателей Exit Point использует широкополосный шумовой сигнал во всем звуковом диапазоне. Человек легко определяет точное направление на этот источник даже в условиях замкнутых помещений с отражениями от окружающих предметов.
Очень много вопросов возникает при проектировании систем речевого оповещения в части требуемой полосы воспроизводимых частот. С одной стороны, в своде правил СП3.13130 предусмотрено, что речевые оповещатели должны воспроизводить нормально слышимые частоты в диапазоне от 200 до 5000 Гц. С другой стороны, в ГОСТ Р 53325 для речевых оповещателей предусмотрен диапазон воспроизводимых частот не уже, чем от 500 до 3500 Гц при неравномерности частотной характеристики в диапазоне не более 1б дБ, что вроде как значительно уже, чем предусмотрено сводом правил. Но тут есть одна трудность: в своде правил не определена неравномерность этой частотной характеристики. Поэтому можно сделать заключение, что любой опо-вещатель, соответствующий ГОСТ Р 53325, будет соответствовать и требованиям свода правил, просто сигналы с частотами от 3500 до 5000 Гц будут воспроизводиться намного тише сигналов в полосе частот от 500 до 3500 Гц, а другого и не требуется. И это совсем не страшно.
В телефонной связи изначально была выбрана полоса эффективно передаваемых частот составного канала ТЧ (тональной частоты), равной 300-400 Гц при максимальной неравномерности частотной характеристики 8,7 дБ (ГОСТ 21655-87 «Каналы и тракты магистральной первичной сети единой автоматизированной системы связи»). На разборчивость речи это не влияет, а вот экономически это полностью оправдано. Более того, в некоторых системах связи вообще верхняя частота пропускания ограничена 2700 Гц. Если на объекте не стоит задачи использовать систему речевого оповещения еще и в качестве трансляционной сети, то использование СОУЭ с полосой воспроизводимых от 500 до 3500 Гц частот позволяет снизить потребляемую мощность от резервных источников питания (аккумуляторов), тем самым снизить затраты на них.
Живучесть СОУЭ при пожаре
Системы оповещения людей о пожаре и управления эвакуацией должны функционировать в течение всего времени, необходимого для завершения эвакуации людей из здания, сооружения, строения.
По надежности электроснабжения СОУЭ относятся к 1-й категории. При этом в системе оповещения людей должно осуществляться автоматическое переключение с основного источника питания на резервный. При использовании в качестве резервного питания аккумуляторной батареи время работы СОУЭ в дежурном режиме от неразряженного источника должно быть не менее 24 часов, время работы технических средств оповещения от резервного источника в тревожном режиме рассчитывается из времени, необходимого для завершения эвакуации людей. Таким образом, имеем необходимость работы от резервных источников питания в дежурном режиме не менее 24 часов и в режиме оповещения и управления эвакуацией людей в течение времени, необходимого для ее завершения. Вот из расчета этого и надо в систему закладывать емкость резервных источников питания.
Максимальная температура, при которой СОУЭ и речевые оповещатели должны сохранять работоспособность, должна быть не ниже 550 °С.
Кабели, провода СОУЭ, а также способы их прокладки должны обеспечивать работоспособность соединительных линий в условиях пожара в течение времени, необходимого для полной эвакуации людей в безопасную зону. Требования к кабельной продукции изложены в ГОСТ Р 53315-2009 «Кабельные изделия. Требования пожарной безопасности. Методы испытаний». В п. 6 ГОСТ указана область применения кабельного изделия с учетом пожарной опасности и типа исполнения. В национальный стандарт ГОСТ Р 53315-2009 включен параметр «огнестойкость кабеля». Количественной мерой этого параметра является «предел огнестойкости», характеризующий время, в течение которого кабель (при воздействии регламентированного нормами теплового источника) выполняет свои функции (передачу электроэнергии, сигналов).
Оповещатели не должны иметь регуляторов громкости и должны подключаться к сети электропитания и (или) к линиям оповещения с помощью пайки или под винт
Другие показатели, приведенные в стандарте, также являются обязательными к исполнению. На практике огнестойкость кабельных линий определяется не только конструктивным исполнением кабеля, но и способом его прокладки на объекте. В связи с этим особую важность приобретает вопрос проверки сохранения работоспособности кабеля в условиях пожара с реальными конструктивными элементами прокладки (лотками, креплениями, соединительными коробками и т.п.). То есть необходимо испытывать не один кабель, а сразу всю кабельную систему, как это, например, осуществляется в соответствии с европейским стандартом DIN 4102-12 «Огнестойкость строительных материалов и конструкций. Часть 12. Надежность систем электрических кабелей. Требования и испытания».
Контроль линий оповещения и управления.
Основное требование к системам оповещения, которое разительно отличает ФЗ №123 от всех предыдущих нормативных документов – это контроль их работоспособности, в частности речь идет о контроле целостности линий оповещения СП 3.13130.2009 п. 3.4 «..Радиоканальные соединительные линии, а также соединительные линии в СОУЭ с речевым оповещением должны быть обеспечены, кроме того, системой автоматического контроля их работоспособности». Приборы управления системами оповещения и эвакуации имеют множество разнообразных функций, среди которых можно выделить контроль цепей исполнительных устройств как одну из важнейших.
Стоит отметить, что чаще всего выделяют четыре способа контроля цепей нагрузок в общей классификации методов контроля:
-
— контроль через дополнительные линии;
— контроль по импедансу (по установленной мощности);
— контроль по адресным меткам;
— контроль по постоянному току с применением блокирующих элементов.
Производители блоков речевого оповещения используют различные способы контроля работоспособности линий оповещения и управления, остановимся на каждом способе подробнее.
1. Контроль через дополнительные линии.
Общий смысл контроля через дополнительные линии заключен в самом названии этого способа. Контроль разбивается на две стадии (см. рис.3.). На первой стадии проверяется первая линия управления «Л1» с применением второго контрольного провода «Контроль 2». На второй стадии проверки – проверяется линия управления «Л2» с применением первого контрольного провода «Контроль 1». Сам метод контроля — это контроль шлейфа сигнализации по постоянному току, при этом оконечный резистор устанавливается в приемно-контрольном приборе.
Рис. 3. Контроль через дополнительные линии.
Контроль через дополнительные линии оправдан, если необходимо использовать оповещатели разных производителей в одной системе, и если эта необходимость имеет большее значение, чем стоимость дополнительных монтажных затрат (стоимость контрольных проводов и их монтаж).
Плюсы способа:
— полный контроль линий по всей длине и возможность контроля оповещателей на «проход»;
— допустимы оповещатели различных производителей в одной системе.
Минусы способа:
— дополнительны затраты по прокладке контрольных проводов.
— использование ППКОП для контроля за целостностью линий.
2. Контроль по импедансу.
В основе способа контроля по импедансу лежит измерение полного сопротивления линии оповещения по переменному току. Другое название способа, используемое некоторыми производителями – «контроль по установленной мощности». Контролирующим прибором производятся измерения переменных напряжения и тока в линии оповещения, а затем вычисляется мощность (как произведение тока и напряжения) или полное сопротивление (как отношение напряжения к току). Эта величина фиксируется и в дальнейшем прибор вычисляет отклонения от неё (см. рис.4.).
Рис. 4. Контроль по импедансу (установленной мощности).
Так как по цепи пропускается переменный ток, то чтобы акустические системы не воспроизводили тестовый сигнал контроля частота переменного напряжения выбирается выше звукового барьера слышимого человеком ухом, то есть в районе 20-30кГц. Б`ольшая частота увеличит вклад реактивной составляющей линии связи в общую картину и потребует более высоких вычислительных ресурсов контролирующего прибора.
Основная проблема практического использования способа заключается в значительной индуктивной и емкостной составляющих линии оповещения, а также влияния факторов окружающей среды (температура, влажность, электромагнитные помехи). В результате такого влияния погрешность может составлять 20 и более процентов.
Плюсы способа:
— возможность контроля линии оповещения и оповещателей (особенно при малом их количестве (погрешность 20%);
— для работы и контроля достаточно двух проводов.
— нет необходимости в дополнительных блокирующих элементах.
Минусы способа:
— высокая стоимость прибора контроля;
— высокая погрешность способа контроля, особенно при большом числе оповещателей.
3. Контроль по адресным меткам.
Принцип работы системы с контролем по адресным меткам очень похож на работу адресных и адресно-аналоговых систем охранно-пожарной сигнализации. Суть способа – каждый оповещатель имеет свой адрес, который передается на прибор управления. Вместе с адресом оповещатель может передавать свое состояние и различные другие параметры в цифровом виде. Надо заметить, что это наиболее перспективный на сегодняшний день способ контроля, хотя его распространение довольно узкое из-за высокой цены (см. рис.5.). Основное применение метод нашел в радиоканальных системах речевого оповещения.
Рис. 5. Способ контроля по адресным меткам.
Плюсы способа:
— автоматический контроль линии трансляции и оповещателей;
— контроль состояния оповещателей и дополнительных параметров.
Минусы способа:
— высокая стоимость оборудования;
— использование оповещателей только определённых производителей.
4. Контроль по постоянному току.
Способ контроля по постоянному току реализуется увеличением сопротивления звукового оповещателя (или первичной обмотки трансформатора звукового оповещателя в трансляционных системах оповещения) постоянному току последовательным включением блокирующего элемента (конденсатора). Блокирующий конденсатор выбирается достаточно большой емкости, чтобы избежать сужения воспроизводимого динамиком звукового диапазона (см. рис.6.).
Рис. 6. Способ контроля по постоянному току с блокирующими элементами.
Плюсы способа:
— достоверный контроль линии оповещения по всей длине;
— контроль снятия акустических систем;
— для работы и контроля достаточно двух проводов.
Минусы способа:
— сложность контроля работоспособности самих оповещателей;
— при использовании оповещателей других производителей необходимо устанавливать внешние конденсаторы для работы функции контроля.
При таком способе контроля возможны паразитные потери мощности при воспроизведении сообщений, однако, например, в конструкции БРО «Соната-КЛ» и «Соната-КЛД» производства компании «Арсенал безопасности» это исключено введением в схему контроля линии высокоомного оконечного резистора. Сам контроль при этом максимально упрощается и сводится к классическому контролю шлейфа.
В целом, все перечисленные методы контроля линий оповещения имеют право на существование и отличаются в основном глубиной контроля, сложностью прибора управления и стоимостью монтажных работ.
При написании статьи использованы следующие материалы:
http://arsec.ru (ГК «Арсенал безопасности»)
Журнал «Системы безопасности» №1, 2010